Forschungs- und Entwicklungsaktivitäten in Deutschland im internationalen Vergleich

Harald Legler und Birgit Gehrke unter Mitarbeit von Mark Leidmann
Niedersächsisches Institut für Wirtschaftsforschung
Königstraße 53, 30175 Hannover
www.niw.de

Heike Belitz
Deutsches Institut für Wirtschaftsforschung Berlin
Mohrenstraße 58, 10117 Berlin
www.diw.de

Christoph Grenzmann.
Stifterverband für die Deutsche Wissenschaft
Barkhovenallee 1, 45239 Essen
www.stifterverband.de

Studien zum deutschen Innovationssystem Nr. 1-2008

November 2007

Studien zum deutschen Innovationssystem

Nr. 1-2008

ISSN 1613-4338

Herausgeber:
Expertenkommission Forschung und Innovation (EFI)
Geschäftsstelle: Technische Universität Berlin, VWS 2, Müller-Breslau-Str. (Schleuseninsel), 10623 Berlin
www.e-fi.de

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie die Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung der EFI oder der Institute reproduziert oder unter Verwendung elektronischer Systeme gespeichert, verarbeitet, vervielfältigt oder verbreitet werden.

Ansprechpartner:

Dr. Harald Legler
Niedersächsisches Institut für Wirtschaftsforschung e. V.
Königstraße 53, 30175 Hannover
Tel. +49-511-123316-40, Fax +49-511-123316-55
Email: legler@niw.de
Inhaltsverzeichnis

Abbildungsverzeichnis .. II
Tabellenverzeichnis .. III
Abkürzungsverzeichnis .. IV
Zusammenfassung .. 1
Übersicht ... 2
FuE-Aktivitäten und technologische Leistungsfähigkeit.. 3
Deutschlands FuE-Intensität hat nachgelassen ... 5
FuE-Dynamik der OECD-Länder im neuen Jahrhundert stark gebremst 7
FuE-Vorsprung der deutschen Wirtschaft ist geschrumpft ... 8
FuE in der Wirtschaft - stark durch die USA geprägt ... 10
Wachstumserwartungen und Konjunktur bestimmen die FuE-Dynamik 12
Herausforderung durch aufstrebende Schwellenländer .. 12
Wieder höhere Priorität für FuE in den öffentlichen Haushalten ... 16
Unterstützung industrieller FuE nimmt weltweit wieder leicht zu .. 19
Durchführung von FuE an Hochschulen und wissenschaftlichen Einrichtungen hält Kurs 21
Strukturveränderungen im öffentlichen Sektor mit unterschiedlichen Richtungen 22
Deutschland hat von der FuE-Globalisierung profitiert ... 25
Deutsche Auslands-FuE stagniert ... 28
FuE-Globalisierungspause in den USA .. 30
Weitere Diversifizierung der FuE-Standorte zu erwarten ... 31
FuE in deutschen Klein- und Mittelunternehmen: Kritische Entwicklung 33
FuE im Dienstleistungssektor nimmt in Deutschland zu ... 37
Sektoraler Strukturwandel bei industrieller FuE: Automobil und Spitzentechnik profitieren . 38
Verschiebungen in der Hierarchie der FuE-Intensitäten ... 40
Staatliche Finanzierungsbeiträge zu FuE in der Wirtschaft in Deutschland auf Talfahrt 41
FuE-Kosten- und Personalstruktur für Klein- und Mittelunternehmen ungünstig 44
Externe FuE, FuE-Outsourcing und FuE-Kooperationen nehmen zu 45
Zyklische Abhängigkeit von FuE - kaum Eigendynamik in der deutschen Wirtschaft 48
Wenn nicht jetzt: Wann dann? ... 51
Literaturverzeichnis .. 55
Abbildungsverzeichnis

Abb. 1: Innovatoren nach Innovations- und FuE-Tätigkeit in Deutschland 1993 bis 2006 (in %) ... 4
Abb. 2: FuE-Intensität in ausgewählten OECD-Ländern 1981 bis 2006 ... 6
Abb. 3: FuE-Intensität der deutschen Wirtschaft 1981 bis 2005 im Vergleich ... 9
Abb. 4: FuE-Aufwendungen ausländischer Unternehmen in den USA nach Herkunftsland 1990 bis 2005 in Mio US-$.. 11
Abb. 5: Entwicklung von Bruttoinlandsausgaben für FuE in jeweiligen Preisen nach Weltregionen 1995-2006 ... 13
Abb. 6: FuE-Intensität in ausgewählten Regionen der Welt 1995 bis 2005 14
Abb. 7: Anteil der Weltregionen an den FuE-Kapazitäten 1995-2005 in % - insgesamt, Wirtschaft und öffentlicher Sektor ... 15
Abb. 8: Haushaltsansätze des Staates in FuE in ausgewählten Regionen der Welt 1991-2006 .. 17
Abb. 9: Staatliche FuE-Ausgabensätze in Deutschland 1981 bis 2006 ... 18
Abb. 10: FuE Personalintensität deutscher und ausländischer forschender Unternehmen in ausgewählten Industriezweigen in Deutschland 1993 bis 2005 in % ... 28
Abb. 11: FuE-Intensität ausländischer und einheimischer multinationaler Unternehmen in den USA 1998 bis 2005 ... 31
Abb. 13: FuE-Intensität in forschungsintensiven Industriezweigen 2004 ... 39
Abb. 15: Staatliche Finanzierungsanteile bei Klein- und Mittelunternehmen bzw. Großunternehmen 1979 bis 2005 (in %) ... 42
Abb. 16: Anteil externer FuE-Aufwendungen der Wirtschaft in Deutschland 1979 bis 2005 an den FuE-Gesamtaufwendungen (in %) ... 46
Abb. 17: Externe FuE-Aufwendungen nach durchführenden Sektoren in Deutschland 1979 bis 2005 ... 48
Abb. 18: Interne FuE-Aufwendungen in % der Bruttowertschöpfung der Unternehmen in Deutschland 1981-2008 ... 49
Tabellenverzeichnis

Tab. 1: Jahresdurchschnittliche Veränderung der realen FuE-Ausgaben nach Regionen und Sektoren 1994-2005 (in %)...7
Tab. 2: Beitrag des Staates zur Finanzierung von FuE in der Wirtschaft der OECD-Länder 1981 bis 2006..20
Tab. 3: Staatlicher Finanzierungsbeitrag zu FuE in der Wirtschaft der OECD-Länder 200521
Tab. 4: Finanzierungsanteil der Wirtschaft an FuE in öffentlichen Einrichtungen in OECD-Ländern 2005 (in %)..23
Tab. 5: Durchführung von FuE in den G5-Ländern sowie in der OECD 1981 bis 200624
Tab. 6: FuE-Aktivitäten deutscher Unternehmen im Ausland und ausländischer Unternehmen in Deutschland 2001 bis 2005..26
Tab. 7: Struktur der FuE-Aufwendungen von deutschen und ausländischen Unternehmen in Deutschland 2005 ...27
Tab. 8: Jährliches Wachstum der realen FuE-Aufwendungen ausländischer Tochterunternehmen in den USA 1994-2005...30
Tab. 9: Verbreitung und Ausweitung von FuE-Aktivitäten deutscher Unternehmen in Ausland 2005-2007 ..32
Tab. 10: FuE Personalintensität und FuE-Beteiligung in Bergbau und Verarbeitender Industrie nach Unternehmensgrößenklassen in Deutschland 1995 bis 2005 ..34
Tab. 11: Struktur der FuE-Aktivitäten der Wirtschaft in Deutschland 1979 bis 200535
Tab. 12: Struktur der FuE-Ausgaben 2004 in der OECD-19 ..37
Tab. 13: Finanzierung von FuE in den Unternehmen nach Wirtschaftszweigen, Größen- und Technologieklassen 2005 ..43
Tab. 14: FuE Personalstruktur in den Unternehmen nach Wirtschaftszweigen, Größen- und Technologieklassen 2005 ..44
Tab. 15: Bedeutung und Struktur von externer FuE der Unternehmen nach Wirtschaftszweigen, Größen- und Technologiezweigen 2005 ..47
Abkürzungsverzeichnis

% Prozent
€ Euro
$ Dollar
Abb. Abbildung
ANBERD Analytical Business Expenditure on Research and Development
ARG Argentinien
AUT Österreich
BEL Belgien
BMBF Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie
BRA Brasilien
CAN Kanada
CHN China
CZE Tschechische Republik
DEN Dänemark
DIW Deutsches Institut für Wirtschaftsforschung
DSTI Directorate for Science, Technology and Industry
EAS Economic Analysis and Statistics
EDV Elektronische Datenverarbeitung
EPA Europäisches Patentamt
ESA European Space Agency
ESP Spanien
EU Europäische Union
EU-15 15 EU-Staaten vor der Osterweiterung
EU-25 25 EU-Staaten nach der Osterweiterung
EUKLEMS EU level analysis of capital (K), labour (L), energy (E), materials (M) and service (S) inputs
FhG Fraunhofer-Gesellschaft
FIN Finnland
FRA Frankreich
Fraunhofer ISI Fraunhofer Institut für System- und Innovationsforschung
FS Fachserie
FuE Forschung und experimentelle Entwicklung
G5 Deutschland, Großbritannien, Frankreich, USA und Japan
GBR Großbritannien und Nordirland
GER Deutschland
GERD Gross Domestic Expenditure on Research and Development
GRE Griechenland
GU Großunternehmen
HGF Helmholtz-Gemeinschaft Deutscher Forschungszentren
HIS Hochschulinformationssystem
HUN Ungarn
IMD International Institute for Management Development
IMF International Monetary Fund
IND Indien
IRL Republik Irland
ISI siehe Fraunhofer ISI
ISL Island
ISR Israel
ITA Italien
IuK Information und Kommunikation
IW Institut der deutschen Wirtschaft
JPN Japan
Zusammenfassung

- In Deutschland wird überdurchschnittlich intensiv FuE betrieben. Das gilt sowohl für die Wirtschaft als auch für den Beitrag von Hochschulen und wissenschaftlichen Einrichtungen.
- Die aktuellen Plandaten der FuE-Budgets von Wirtschaft und Staat deuten jedoch an, dass in Deutschland die FuE-Talsohle durchschritten worden ist.
- Das Ziel, die FuE-Anstrengungen deutlich zu erhöhen, ist kein Selbstzweck. Vielmehr haben Investitionen in Bildung Wissenschaft, Forschung und Technologie einen zentralen Stellenwert für betriebliche Innovationen, Wettbewerbsfähigkeit und Wachstum.
- Das weltwirtschaftliche FuE-Tempo ist stark durch die USA geprägt. Seit Ende der 90er Jahre hat sich dort der Staat sehr stark in FuE engagiert. Auch in Deutschland sind die FuE-Budgets der öffentlichen Hand wieder ausgeweitet worden; das Ergebnis war jedoch im Vergleich zum Schwung der meisten anderen Konkurrenzländer recht bescheiden. Dies gilt sowohl für den staatlichen Finanzierungsbeitrag zu privater FuE als auch für die Ausweitung der FuE-Kapazitäten an Hochschulen und wissenschaftlichen Einrichtungen.
- FuE ist in der Wirtschaft von der treibenden Kraft für die wirtschaftliche Entwicklung zu einem unauffälligen Mitläufer in der Konjunktur geworden: Die Wachstumsaussichten der nahen Zukunft bestimmen die FuE-Anstrengungen. Es fehlt an stabiler Eigendynamik.
- In dieser Situation ist der Staat besonders gefordert, durch Forschung an Hochschulen und wissenschaftlichen Einrichtungen die technologischen Optionen der Gesellschaft zu erweitern, der Wirtschaft Anreize für FuE-Aktivitäten zu geben, Hemmnisse aus dem Wege zu räumen und private FuE finanziell zu fördern. Ein Vorteil ist, dass in Deutschland Wirtschaft/Wissenschaft recht eng kooperieren; ein Nachteil sind die - im Gegensatz zu wichtigen Konkurrenten - stark nachlassenden FuE-Finanzierungshilfen.
- Die weltwirtschaftliche FuE-Szene hat im vergangenen Jahrzehnt vor allem dadurch ein anderes Gesicht bekommen, dass die Kapazitäten vornehmlich in Asien expandiert sind. Gewicht und Dynamik sind nicht nur in Japan und Korea hoch, sondern mittlerweile auch in China, Singapur, Taiwan, Israel und Indien. Dass dies nicht nur Anpassungs-FuE an die stark wachsenden Inlandsmärkte ist, zeigt z. B. der stark zunehmende Beitrag dieser Volkswirtschaften zu weltmarkrelevanten Patenten.
• Deutsche Unternehmen haben sich auf FuE-Investitionen in diesen Regionen eingerichtet, weil sie sich an der Erschließung dieser Märkte beteiligen wollen. Gefahr für den Bestand an FuE-Kapazitäten im Inland rührt daraus nicht.

• Denn Deutschland ist hinter den USA der zweitgrößte Standort für grenzüberschreitende FuE-Aktivitäten, es hat von der Internationalisierung in FuE profitiert. Ausländische Unternehmen geben mehr Geld für FuE an deutschen Standorten aus als deutsche Unternehmen im Ausland. Sie forschen hierzulande verhältnismäßig intensiv, nutzen die vorhandenen technologischen Kompetenzen und konzentrieren sich auf die Märkte, in denen auch ihre deutschen Mitbewerber stark sind (Maschinen- und Fahrzeugbau). Ähnliche Muster findet man in anderen FuE-Gastgeberländern.

• Die FuE-Globalisierung war weltweit etwas ins Stocken geraten - die FuE-Investitionen in aufholenden Schwellenländern fallen quantitativ kaum ins Gewicht -, weil Unternehmenszusammenschlüsse und -übernahmen eine Verschnaufpause eingelegt haben. Mit einer Beschleunigung der FuE-Internationalisierung ist jedoch im Zuge der wieder stark steigenden M&A-Aktivitäten zu rechnen.

• FuE ist immer stärker auf akademisches Wissen angewiesen, vor allem bei Dienstleistungen, Spitzentechnologien und Klein- und Mittelunternehmen. Die Verknappungstendenzen bei Naturwissenschaftlern und Ingenieuren sind daher problematisch.

• Auch aus diesem Grunde suchen die Unternehmen bei FuE verstärkt Unterstützung bei Kooperationspartnern sowie bei Hochschulen und wissenschaftlichen Einrichtungen in In- und Ausland. Zwar dominiert die Vergabe von FuE-Aufträgen an Wirtschaftsunternehmen (zu einem großen Teil davon aus dem eigenen Konzern); besonders schnell ist in den letzten Jahren jedoch die Kooperation zwischen Wirtschaft und Wissenschaft/Forschung voran gekommen.

• Eine Stärke der deutschen Wirtschaft ist die relativ hohe FuE-Beteiligung der Unternehmen, also die Breite, in der FuE betrieben wird. Diese hat allerdings etwas nachgelassen, während sie in vielen anderen Ländern gesteigert werden konnte. Dieser Vorteil sollte nicht verloren gehen. Die staatliche FuE-Förderung begünstigt entsprechend seit geraumer Zeit Klein- und Mittelunternehmen stärker als Großunternehmen, allerdings auf wenig merklichem Niveau. Viele andere Länder sind derweil mehr und mehr zu steuerlicher FuE-Förderung übergegangen, die es in Deutschland nicht gibt.

Übersicht

in Kontinuität und Weiterentwicklung der Berichterstattung zur technologischen Leistungsfähigkeit Deutschlands durchgeführt werden. In diesem Geiste wurden die in den Vorjahren erstellten Studien zur Position Deutschlands bei Forschungs- und Entwicklungsaktivitäten auf den neuesten Stand gebracht und im Rahmen dieses Forschungsvertrages zusammengefasst.

- Die weltwirtschaftliche Sicht beleuchtet in einem kombinierten Zeitreihen-/Querschnittsvergleich Deutschlands Position bei industrieller FuE. Dazu gehört auch die Arbeitsteilung und Interaktion zwischen Wirtschaft und Staat bei FuE. Hierzu werden im Rahmen dieses Forschungsvorhabens neue Daten vorgelegt. Strukturelle Untersuchungen umfassen zudem die sektoralen Schwerpunkte bei FuE in der Wirtschaft. Denn die Volkswirtschaften folgen unterschiedlichen Technologiepfaden, die auch Konsequenzen für die FuE-Tätigkeit haben.

- Zweitens steht die Frage auf der Tagesordnung, inwieweit der FuE-Standort Deutschland an der Globalisierung in FuE partizipiert, welche Bedeutung ihm von multinationalen Unternehmen beigemessen wird und wie deren FuE-Arbeitsteilung auf das Innovationsgeschehen wirkt.

- Drittens wird in eine weitreichende Analyse des FuE-Verhaltens der deutschen Wirtschaft vorgenommen. Es wird untersucht, aus welchen Komponenten sich die über einen längeren Zeitraum hinweg nur geringe Dynamik, z. T. gar rückläufige Entwicklung der FuE-Aktivitäten in Deutschland zusammensetzt und wie der Wiederanstieg bei FuE in Deutschland hinsichtlich Stabilität und Intensität hinsichtlich ihrer Strukturwirkungen einzuschätzen ist, welche Rolle Klein- und Mittelunternehmen spielen, welchen Einfluss der Staat auf die Aktivitäten nimmt, welche Industriezweige und Sektoren in Deutschland führend sind und wie intensiv die FuE-Verflechtung in der Wirtschaft sowie zwischen Wirtschaft und Wissenschaft/Forschung ist. Abschließend wird ein kurzer Ausblick auf die aktuelle FuE-Situation in der deutschen Wirtschaft gegeben.

FuE-Aktivitäten und technologische Leistungsfähigkeit

FuE in Wirtschaft, Hochschulen und in wissenschaftlichen Einrichtungen nimmt in der gesamten Wirkungskette von Bildung und Qualifikation, Wissenschaft, Forschung und Technologie, Inventio-

1 Aktualisierung von Legler, Krawczyk (2006).
3 Aktualisierung von Legler, Grenzmann, Marquardt (2005).
4 Vgl. die aktuelle Fassung der OECD (2002).

Abb. 1: Unternehmen nach Innovations- und FuE-Tätigkeit in Deutschland 1998 bis 2006 (in %)

Die empirischen Zusammenhänge legen allerdings den Schluss nahe, dass neben der FuE-Tätigkeit eine Reihe von weiteren Einflussfaktoren auf die Produktivitätsentwicklung wirken\footnote{Vgl. Voßkamp, Schmidt-Ehmcke (2006).} (Marktverfassung und -dynamik, Ausbildungssystem und berufliche Weiterbildung, Mobilität von Arbeitskräften, Kapitalverfügbarkeit, Flexibilität des „Innovationssystems“, Diffusionsgeschwindigkeit von neuen Technologien, Innovationshemmnisse, Größe der Volkswirtschaft, Wirtschaftsstruktur und Infrastrukturnutausstattung, internationale Spillovers usw.). Angesichts komplexer Wirkungszusammenhänge und -voraussetzungen ist FuE in hoch entwickelten Volkswirtschaften tatsächlich nur ein \textbf{notwendiger}

Deutschlands FuE-Intensität hat nachgelassen

Deutschland hat bei FuE im internationalen Vergleich keine schlechte Position. Es konnte sich in den 70er und 80er Jahren mit an die Spitze der Industrieländer setzen, und zwar in einer Phase, in der weltweit die FuE-Kapazitäten überdurchschnittlich schnell ausgeweitet wurden (Abb. 2). Der Aufholprozess in Deutschland war auf eine enorme FuE-Intensivierung in fast allen Industrien sowie auf den - damit einhergehenden - industriellen Strukturwandel zu Gunsten forschungsintensiv produzierender Sektoren zurückzuführen11. 1981 war Deutschland bei FuE zur Nummer 1 in der Welt aufgerückt. Die Dynamik ist allerdings gegen Ende der 80er, Anfang der 90er Jahre recht abrupt zum Stillstand gekommen.

Auch in den meisten anderen großen Volkswirtschaften waren die FuE-Anstrengungen seit Beginn der 90er Jahre zunächst nicht mehr gestiegen oder sind real gar zurückgenommen worden: Der Bedeutungsrückgang von FuE konnte erst Mitte der 90er Jahre gestoppt werden. Deutschland stand damals also mit der nachlassenden Neigung, FuE zu betreiben, nicht allein. Die Entwicklungsmuster der Länder in den 90er Jahren verliefen jedoch nicht einheitlich, sondern durchaus unterschiedlich. Die FuE-Ausgaben insgesamt haben in den westlichen Industrieländern im Vergleich zum Inlandsprodukt sehr flexibel auf jeweils veränderte Eckdaten reagiert. Zu nennen sind vor allem folgende Einflussfaktoren:

- Einerseits bestimmen die makroökonomischen Rahmenbedingungen und der wirtschaftlich-technische Wandel die Dynamik und die internationale Verteilung der FuE-Aktivitäten der Wirtschaft: Die Wachstumsperspektiven mit ihren unterschiedlich kräftigen Impulsen für FuE und Innovationen; die konjunkturelle Situation und die daraus resultierenden Finanzierungsmöglichkeiten für FuE; der sektorale Strukturwandel zu Gunsten von (wissensintensiven) Dienstleistungen mit ihren in aller Regel hochwertigen Anforderungen an neue Technologien; die weltweit zunehmende Konzentration unternehmerischer FuE auf wenige (Spitzentechnologie-)Bereiche12; die

Einbeziehung von Klein- und Mittelunternehmen in die FuE-Prozesse; die Allokation von FuE-Standorten durch multinationale Unternehmen innerhalb der Gruppe der westlichen Industrieländer; die erhöhte Anziehungskraft einiger aufholender Schwellenländer.

Abb. 2: FuE-Intensität in ausgewählten OECD-Ländern 1981 bis 2006*

- Andererseits spielen staatliche Impulse eine Rolle, sie haben eher restriktiv gewirkt: Die Abrüstungsbemühungen und der Rückgang militärisch begründeter FuE-Staatsnachfrage nach dem Ende

des „kalten Krieges“; der offenbar säkular angelegte relative Rückzug des Staates aus der Förderung von FuE in der Wirtschaft, zeitweise auch aus der Durchführung von FuE in Einrichtungen von Wissenschaft und Forschung; der Konsolidierungsdruck bei den öffentlichen Haushalten sowie Kontroversen um zivile Großprojekte (bemannte Raumforschung, Nuklearforschung).

In jüngerer Zeit hat sich der Staat jedoch allenthalben wieder stärker auf seine wichtige Funktion im FuE-System besonnen. Zunehmend machen sich auch die Potenziale und Restriktionen, die sich aus der (Nicht-)Verfügbarkeit von hoch qualifiziertem Personal ergeben, bemerkbar - in den Volkswirtschaften jedoch in höchst unterschiedlichem Ausmaß.

FuE-Dynamik der OECD-Länder im neuen Jahrhundert stark gebremst

Tab. 1: Jahresdurchschnittliche Veränderung der realen FuE-Ausgaben nach Regionen und Sektoren 1994 – 2005 (in %)

<table>
<thead>
<tr>
<th>Sektor</th>
<th>OECD</th>
<th>USA</th>
<th>JPN</th>
<th>EU-15</th>
<th>GER</th>
<th>GBR</th>
<th>FRA</th>
<th>NORD</th>
<th>SUED</th>
<th>MEDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirtschaft</td>
<td>1994-2000</td>
<td>5,9</td>
<td>7,4</td>
<td>3,8</td>
<td>4,2</td>
<td>4,9</td>
<td>1,9</td>
<td>1,6</td>
<td>8,9</td>
<td>3,9</td>
</tr>
<tr>
<td></td>
<td>2000-2005</td>
<td>1,9</td>
<td>0,0</td>
<td>4,7</td>
<td>1,5</td>
<td>0,5</td>
<td>0,4</td>
<td>1,5</td>
<td>2,7</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td>1994-2005</td>
<td>4,0</td>
<td>4,0</td>
<td>4,2</td>
<td>3,0</td>
<td>2,9</td>
<td>1,2</td>
<td>1,5</td>
<td>6,1</td>
<td>4,1</td>
</tr>
<tr>
<td>*Öffentlicher Sektor</td>
<td>1994-2000</td>
<td>3,3</td>
<td>2,7</td>
<td>4,0</td>
<td>2,3</td>
<td>2,0</td>
<td>1,7</td>
<td>1,1</td>
<td>4,2</td>
<td>4,2</td>
</tr>
<tr>
<td></td>
<td>2000-2005</td>
<td>3,4</td>
<td>5,2</td>
<td>-1,1</td>
<td>2,8</td>
<td>1,5</td>
<td>3,4</td>
<td>1,5</td>
<td>4,4</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>1994-2005</td>
<td>3,3</td>
<td>3,8</td>
<td>1,6</td>
<td>2,4</td>
<td>1,7</td>
<td>2,4</td>
<td>1,3</td>
<td>4,3</td>
<td>3,8</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>1994-2000</td>
<td>5,0</td>
<td>6,1</td>
<td>3,9</td>
<td>3,5</td>
<td>4,0</td>
<td>1,8</td>
<td>1,4</td>
<td>7,4</td>
<td>4,1</td>
</tr>
<tr>
<td></td>
<td>2000-2005</td>
<td>2,4</td>
<td>1,4</td>
<td>3,1</td>
<td>1,9</td>
<td>0,8</td>
<td>1,5</td>
<td>1,5</td>
<td>3,2</td>
<td>3,7</td>
</tr>
<tr>
<td></td>
<td>1994-2005</td>
<td>3,8</td>
<td>3,9</td>
<td>3,5</td>
<td>2,8</td>
<td>2,5</td>
<td>1,7</td>
<td>1,4</td>
<td>5,5</td>
<td>3,9</td>
</tr>
</tbody>
</table>

*) Hochschulen und parauniversitäre FuE-Einrichtungen.

Daten teilweise geschätzt.

NORD: SWE, FIN, NOR, DEN, IRL, ISL.

SUED: ITA, POR, ESP, GRE.

MEDI: BEL, NED, AUT, SUI.

Quelle: OECD, Main Science And Technology Indicators (2007/2).

• Am schnellsten sind im neuen Jahrhundert die südeuropäischen Länder voran gekommen. Es scheint zu wirken, dass sich etliche europäische Länder explizit FuE-Ziele gesetzt und die Anstrengungen entsprechend erhöht haben. Trotz ihrer Dynamikseinbußen lagen die nordischen Staaten - zusammen mit Japan - immer noch klar im Vorderfeld.
• In Deutschland, Frankreich und Großbritannien ist die FuE-Zuwachsrate deutlich niedriger als im OECD-Durchschnitt ausgefallen. In der Phase des FuE-Aufschwunges der zweiten Hälfte der 90er Jahre waren die FuE-Akteure in Frankreich und Großbritannien im Vergleich zu Deutschland „Nachzügler“. Sie halten jedoch bislang Kurs, haben seit 2000 die FuE-Kapazitäten deutlich kräftiger ausgeweitet als Deutschland und holen gegenüber Deutschland auf.

• Deutschland muss folglich die Anstrengungen erhöhen, um nicht noch weiter abzufallen und in das hintere Mittelfeld durchgereicht zu werden. Deutschlands Stand im internationalen FuE-Wettbewerb ist in den ersten Jahren des neuen Jahrhunderts zwar von der Platzierung her als weniger gut als zu Beginn der 90er Jahre (FuE-Intensität: 2,7 %) einzuschätzen. Damals gab es jedoch eine noch schärfere Reaktion des FuE-Systems auf den Weltwirtschaftsanschlag und auf die Anforderungen aus der deutschen Wiedervereinigung: FuE war damals stark zurückgedrangt worden. Aktuell hingegen ist FuE selbst in der recessiven Phase seit 2000 zumindest noch im Wachstum mitgelaufen. Der derzeit erreichte FuE-Anteil von 2,5 % am Inlandsprodukt scheint allerdings eine Marke zu sein, die ohne gezielt forcierte Anstrengungen auf allen Seiten für längere Zeit als Durchschnittspegel anzusehen sein wird.

Gemessen an der FuE-Intensität (FuE-Ausgaben bezogen auf das Inlandsprodukt) lag Schweden im Jahre 2005 mit 3,9 % in der OECD an der Spitze, gefolgt von Finnland (3,5 %), Japan (3,3 %), Korea (3,0 %), der Schweiz (2,9 %, 2004), Island (2,8 %) sowie den USA (2,6 %). Deutschland und Dänemark folgten mit 2,5 % vor Österreich (2,4 %), Frankreich (2,1 %), Kanada (2,0 %) sowie Belgien (1,9 %), Großbritannien und Australien (jeweils 1,8 %). Die EU-15-Länder als Ganzes betrachtet bringen unverändert nur insgesamt knapp 1,9 % ihres Inlandsproduktes für FuE auf (EU-25: knapp 1,8 %). Sie sind seit Anfang der 90er nicht voran gekommen und liegen damit weiterhin klar hinter den USA und Japan. Während Deutschland Anfang der 80er Jahre auf Platz 1 lag und Anfang der 90er Jahre noch mit an der Spitze zu finden war (Rang 4 im Jahr 1991), ist es 2005/2006 im vorderen Mittelfeld (Rang 8 bis 9) zu finden. Es rangiert damit immer noch oberhalb des OECD-Durchschnitts (2,25 %). Während jedoch noch vor Jahren die USA und Japan als Maßstab galten, an dem man sich im internationalen Technologiewettbewerb messen müsse, wird nun vielfach die Messlatte auf den deutlich niedrigeren europäischen Pegel gelegt, damit wenigstens diese Höhe noch genommen werden kann.

FuE-Vorsprung der deutschen Wirtschaft ist geschrumpft

Das Gesamtbild zur weltweiten FuE-Entwicklung wird maßgeblich durch FuE in der Wirtschaft bestimmt. Im OECD-Raum beansprucht sie 68 % aller FuE-Kapazitäten. Deutschlands Wirtschaft produziert überdurchschnittlich forschungsintensiv (Abb. 3). Ob mit der Wertschöpfung im Unternehmenssektor oder mit den Erwerbspersonen verglichen - die FuE-Intensität liegt rund 15 bis 20 % oberhalb des OECD-Durchschnitts. Die Relation hat sich sogar - aus einem recht tiefen Tal Mitte der 90er Jahre kommend - im Industrieländervergleich wieder leicht verbessert. Allerdings ist Deutschlands Vorsprung klar geschmolzen: In den 80er Jahren lagen die realen industriellen FuE-Ausgaben bezogen auf die Erwerbspersonen um 40 bis 50 %, im Vergleich zur Wertschöpfung 25 bis 40 % oberhalb des Durchschnitts der westlichen Industrieländer. Damit ist Deutschland im Industrieländer-

13 In Deutschland wurden 2006: 58,2 Mrd. € für FuE ausgegeben, davon 40,5 Mrd. € in der Wirtschaft, 9,6 Mrd. € in Hochschulen und 8,1 Mrd. € in wissenschaftlichen außeruniversitären Einrichtungen (jeweils Planangaben). Von den insgesamt 485 Tsd. in FuE beschäftigten Personen (vollzeit gerechnet) entfielen 308 Tsd. auf die Wirtschaft, 100 Tsd. auf Hochschulen und 77 Tsd. auf wissenschaftliche Einrichtungen. Vgl. MSTI 2007/2.

Abb. 3: **FuE-Intensität der deutschen Wirtschaft 1981 bis 2005 im Vergleich**

![Diagramm zur FuE-Intensität der deutschen Wirtschaft](image)

Halblogarithmischer Maßstab. *) Bis einschl. 1990 Westdeutschland.

Quelle: OECD, Main Science and Technology Indicators (2007/2). - Berechnungen des NIW.

Die Bedeutung der deutschen Wirtschaft für FuE in der Weltwirtschaft hat sich stark reduziert: Anfang der 80er Jahre belief sich ihr Anteil an den FuE-Aufwendungen im OECD-Raum auf 12 %, Anfang der 90er Jahre noch auf über 10 %. Mittlerweile hat sich der OECD-Raum erweitert. Bereits aus diesem Grund muss man mit zusätzlichen Konkurrenten rechnen, die den gleichen weltwirtschaftli-
lichen Regeln ausgesetzt sind und mit entsprechenden Anstrengungen im Technologiewettbewerb antreten. Zusätzlich sind gewichtige Mitstreiter aus Asien, Mittel- und Osteuropa und Lateinamerika hinzugekommen. Rechnet man die dort bestehenden und neu errichteten FuE-Kapazitäten hinzu, dann hat sich die weltwirtschaftliche Bedeutung der deutschen Wirtschaft für FuE - also für die Ausweitung des technologischen Wissens - bis 2005 mit einem Anteil von ungefähr 6½ % gegenüber Anfang der 80er Jahre fast halbiert.

FuE in der Wirtschaft - stark durch die USA geprägt

- Negativ betroffen in den USA14 waren vor allem die FuE-Kapazitäten in der Elektronik (IuK-Wirtschaft und Telekommunikation), die 2002 um 30 % unter das Niveau von 2001 rutschten. Hier haben sich im Nachhinein die starken Kapazitätserweiterungen der Vorjahre als überdimensioniert herausgestellt, zudem gab es Reaktionen auf Regulierungen in der Telekommunikation.

- Der gleichzeitig sehr starke Zuwachs bei Informations- und Telekommunikationsdienstleistungen gleicht das Minus in der Medientechnik/Elektronik etwa zur Hälfte aus.

- Die gleiche Frage stellt sich für den Automobilbau, der allerdings aus strukturellen Gründen - Unternehmenszusammenschlüsse, Standortverlagerungen - mit FuE-Kapazitätseinschnitten zu kämpfen hat, die noch nicht wieder aufgefüllt sind.

- Im US-Instrumentenbau gingen die FuE-Kapazitäten in dem betrachteten Zeitraum nur wenig nach unten, sie wurden ab 2001 wieder ausgeweitet, zuletzt jedoch wieder etwas zurückgenommen.

14 Vgl. zum Folgenden Auswertungen der NSF sowie die ANBERD-Datenbank der OECD.

Abb. 4: FuE-Aufwendungen ausländischer Unternehmen in den USA nach Herkunftsland 1990 bis 2005 in Mio US-

Die USA sind nach wie vor das Land mit den größten FuE-Aufwendungen ausländischer Unternehmen (31,7 Mrd. $ im Jahr 200515). Bereits ab 1999 gab es jedoch einen deutlichen Rückgang der Zuwachsraten der FuE-Aufwendungen von ausländischen Unternehmen (\textit{Abb. 4}). Der Anteil der ausländischen Unternehmen an den gesamten FuE-Ausgaben der Wirtschaft hält sich damit seit 1998 unverändert etwas unter 15 %. Umgekehrt zeichnet sich bei US-Unternehmen seit 2004 wieder eine Zunahme der FuE-Auslandsaktivitäten ab.16

Die schwache FuE-Expansion von ausländischen Unternehmen in den USA zeigt: Ausländische Unternehmen passen sich im FuE-Verhalten wie ihre einheimischen Wettbewerber an, sie sind ja auch den gleichen Markt-, Produktions- und Forschungsbedingungen unterworfen. (vgl. auch die Ausführungen zur FuE-Globalisierung deutschen Unternehmens \textit{weiter unten}).

15 US DoC (2005), vgl. auch Tab. 8.

16 Vgl. Yorgason (2007).
Wachstumserwartungen und Konjunktur bestimmen die FuE-Dynamik

Die in den meisten OECD-Ländern seit geraumer Zeit beobachtete weitgehende Parallelentwicklung von FuE und Wertschöpfung in der Wirtschaft deutet darauf hin, dass sich die Unternehmen bei den FuE-Projekten zunehmend weniger an mittelfristig-strategischen Zielen und an einer vorsorglichen Ausweitung der technologischen Möglichkeiten orientieren, sondern immer mehr an der kurzfristigen Nachfrageentwicklung und den Wachstumsaussichten in naher Zukunft. Die zyklische Komponente von FuE ist lange Zeit durch die starke Trendkomponente in den 80er und späten 90er Jahren, als FuE allenthalben immer schneller ausgeweitet wurde als das gesamtwirtschaftliche Produktionspotenzial, überlagert worden. Sie wurde erst spürbar, als der Trend gestoppt war, d. h. die großen Volkswirtschaften an die Marke von 3 % bei der FuE-Intensität gestoßen waren, die damals vielfach als „Schallmauer“ angesehen wurde. Gedämpfte Wachstumserwartungen für die kurze und mittlere Sicht hatten den Unternehmen eine vorsichtigere FuE-Politik nahegelegt: Die Rentabilität von FuE-Projekten schien angesichts hoher Realzinsen zu unsicher.

Herausforderung durch aufstrebende Schwellenländer

Es ist jedoch fraglich, ob die westlichen Industrieländer allein noch ein geeigneter Maßstab für die FuE-Dynamik sind. Denn das Teilnehmerfeld am Technologiewettbewerb ist durch die Integration der südeuropäischen Länder, der mittel- und osteuropäischen Reformstaaten sowie der asiatischen und lateinamerikanischen Länder kräftig aufgestockt worden. Dieser Prozess hat eine deutliche Ausweitung des weltwirtschaftlichen Innovationspotenzials zur Folge gehabt (Abb. 5).

Die aufstrebenden, bevölkerungsreichen und wachstumsstarken Schwellenländer haben Bildung und Wissenschaft, Forschung und Technologie als bedeutendes Fundament und strategische Basis eines stabilen Wachstums- und Aufholprozesses erkannt und agieren entsprechend. Denn mit fortschreitender Entwicklung nehmen die Kostenvorteile ab, der Imitationsspielraum verringert sich, die Auf-

hol-Länder müssen zunehmend in originäre Innovationen investieren. Was Japan in den 60er und 70er Jahren und Korea in den 80er und 90er Jahren vollzogen, setzt sich aktuell an anderer Stelle fort. Insbesondere Indien und China haben eine enorme Sogkraft und Eigendynamik entwickelt. Eine rasch expandierende Binnennachfrage, ausreichend wissenschaftliches Personal und Kompetenzen sowie niedrige FuE-Kosten machen die Region zunehmend für ausländische Unternehmen attraktiv.

Abb. 5: Entwicklung der Bruttoinlandsausgaben für FuE in jeweiligen Preisen nach Weltregionen 1995-2006

Indien gehört mit knapp 28 Mrd. $ volumenmäßig in die Top 8. Attraktiv sind für ausländische Investoren vor allem die wissenschaftliche Tradition sowie die verfügbaren Humanressourcen. Der Staat spielt bei der Durchführung von FuE allerdings nach wie vor die dominierende Rolle, die FuE-Schwerpunkte sind daher auch stark durch staatliche Ziele geprägt (Militär-, Agrar-, Raumfahrt-, Gesundheits-, Energieforschung). In Indien gründen ausländische Unternehmen vielfach produktionsunabhängige FuE-Stätten, FuE ist mit 26 % sogar meist genannter Hauptanlass für aus-
ländische Direktinvestitionen\(^{19}\). Als besonders günstig gelten die Bedingungen für FuE in Chemie und Pharmazie (klinische Studien) sowie in Elektronik und Software.

- Drei Viertel der zwischen 2002 und 2004 in Entwicklungs- und Schwellenländern errichteten neuen FuE-Standorte befinden sich in Indien oder China.\(^{20}\) Multinationale Unternehmen forschen und entwickeln dort überwiegend zur Anpassung ihres Sortiments an die regionalen Marktbesonderheiten. FuE hat in diesen Ländern teilweise aber auch schon Weltmarktrelevanz bekommen.

Abb. 6: FuE-Intensität in ausgewählten Regionen der Welt 1995 bis 2005

- Bruttoinlandsaufwendungen für FuE in % des Bruttoinlandsprodukts -

\(^{19}\) Vgl. OCO Consulting (2007).
\(^{21}\) Berechnet aus MSTI 2007/2.
\(^{22}\) Dies ergibt sich aus Angaben des Fraunhofer ISI für die Studie von Rammer, Legler u. a. (2007).
Abb. 7: Anteil der Weltregionen an den FuE-Kapazitäten 1995-2005 in % - insgesamt, Wirtschaft und öffentlicher Sektor

STC (ausgewählte Schwellenländer): CZE, HUN, POL, SVK, SLO, RUS, ROM, CHN, KOR, TPE, ISR, SIN, IND, ARG, BRA, MEX, RSA.

• Auch in Ungarn, Tschechien und der Slowakei erweitern multinationale Unternehmen ihre FuE-Kapazitäten. Sie nutzen vor allem das Fachkräftepotenzial für FuE in gehobenen und mittleren Technologisektoren.

Die FuE-Intensität der größten Aufholländer ist seit 1995 fast um einen halben Prozentpunkt gestiegen und übertrifft mit 1,2 % bereits deutlich die der südeuropäischen Länder (1 %, Abb. 6). Sie haben im Zeitraum von 1995 bis 2005 etwa 38 % der zusätzlichen FuE-Ausgaben getätigt (Abb. 7). Diese Länder - allen voran China - haben damit mehr noch als die USA (28 %), die EU (18 %, davon Deutschland knapp 5 %) und Japan 10 % das internationale FuE-Tempo bestimmt. Der Marginalbeitrag der Aufholländer erscheint in einem besonders strahlenden Licht, wenn man nur die Periode ab 2000 berücksichtigt: Dann sind es über 45 % (Wirtschaft: 48 %, Wissenschaft/Forschung: 40 %). Bei

einer Ausgangsbasis Mitte der 90er Jahre von 15 % beträgt ihr Anteil an den weltweiten FuE-Ausgaben nun bereits über 26 %.

Wieder höhere Priorität für FuE in den öffentlichen Haushalten

Der ökonomische Erfolg von Forschungsarbeiten in der Wirtschaft ist in vielen Fällen unsicher, nur langfristig zu realisieren und z. T. mit hohem finanziellen Aufwand und technologischem Risiko verbunden. Dies betrifft zum einen Märkte, auf denen der Staat in großem Umfang als Nachfrager auftritt, um eigenständige sozio-ökonomische Ziele zu realisieren oder die er stark reguliert (Gesundheit, Umwelt, Sicherheit usw.). In anderen Fällen würden Unternehmen nicht in FuE investieren - obwohl dies zu Innovationen führen würde -, weil sie sich die Erträge der Forschung nicht vollständig aneignen können.24 Aus der „Lücke“ zwischen volkswirtschaftlichen und privatwirtschaftlichen Erträgen von Forschungsaktivitäten werden gewerblicher Rechtsschutz bzw. öffentlich finanzierte Grundlagenforschung zur Erweiterung der technologischen Optionen, Forschung für Aufgaben im öffentlichen Interesse sowie die Förderung von Gemeinschaftsforschung, Kooperationen und betrieblichen FuE-Projekten abgeleitet.

Während sich der Staat seit 30 Jahren in praktisch allen hochentwickelten Volkswirtschaften bei der FuE-Finanzierung immer mehr zurückgenommen hat, hat er sich im neuen Jahrtausend wieder neu in das FuE-Geschehen eingeordnet (Abb. 8).

Abb. 8: Haushaltsansätze des Staates in FuE in ausgewählten Regionen der Welt 1991-2006

- 1991=100 -

NORD: SWE, FIN, NOR, DEN, IRL, ISL. - SUED: ITA, POR, ESP, GRE. - MEDE BEL, NED, AUT, SUI.
Halblogarithmischer Maßstab. - Daten zum Teil geschätzt.
Quelle: OECD, Main Science And Technology Indicators (2007/2). - Berechnungen und Schätzungen des NIW.

- Der staatliche FuE-Finanzierungsbeitrag ist in den OECD-Ländern bezogen auf das Inlandsprodukt von 0,92 (1985) über 0,83 (1990) auf 0,63 % (2000) gesunken, in Deutschland von 0,98 auf 0,77 %. Es gab verschiedene und in den einzelnen Ländern unterschiedliche Gründe dafür: Der Rückgang militärisch begründeter Staatsnachfrage nach FuE-Leistungen seit dem Ende des „kalten Krieges“, Konsolidierungsdruck bei den öffentlichen Haushalten sowie Kontroversen um zivile Großprojekte (bemannte Raumfahrt, Atomenergie) wurden als wichtige Begründungen angeführt.

26 Vgl. die Zusammenstellungen der NSF sowie der OECD (STI Scoreboard 2007).

27 Berechnet aus OECD (STI Scoreboard 2007).

Im Allgemeinen hat der Staat weltweit wieder mehr Verantwortung übernommen, sei es durch eine Aufstockung der FuE-Finanzierungshilfen für Unternehmen, sei es durch die Ausweitung der FuE-Kapazitäten an Hochschulen und in außeruniversitären FuE-Einrichtungen. So wird aus den OECD-Ländern zwischen 1999 und 2006 ein (nominaler) Anstieg von über 7% pro Jahr gemeldet. Darunter befinden sich bspw. Irland (19%), Spanien (17%), Korea mit 12%, die USA mit 8,3%, Norwegen und Portugal (jeweils 8%). In Großbritannien, Schweden, Kanada und Australien, wurden in diesem Zeitraum die FuE-Haushaltsansätze um 6-7% p. a. ausgeweitet. Inwieweit diese z. T. recht hohen Zuwächse auch im Haushaltsvollzug realisiert worden sind und welche Wirkungen dies auf die Kapazitäten in FuE gehabt hat, ist noch offen. Einiges wird in Überhitzungserscheinungen auf dem Markt für hoch qualifizierte Arbeitskräfte enden; es sind auch Verschiebungen zwischen den Förderbereichen zu erwarten.28

Abb. 9: Staatliche FuE-Ausgabenansätze in Deutschland 1981 bis 2006*

Halblogarithmischer Maßstab. - *) Bis einschl. 1990 Westdeutschland.
Quelle: OECD, Main Science and Technology Indicators (2007/2). - Berechnungen des NIW.

Immerhin ist FuE wieder stärker in das Blickfeld der öffentlichen Haushalte gerückt - auch in Deutschland, wo praktisch die gesamten 90er Jahre hindurch Stillstand geherrscht hatte und ab 1999 eine Ausweitung der staatlichen FuE-Budgets um 1,3 % jährlich verwirklicht werden konnte. Real bedeutet dies dennoch Stagnation. Damit ist der staatliche FuE-Finanzierungsanteil mit 0,7 % des Inlandsproduktes auf den tiefsten Stand gesunken. So muss das noch vor einigen Jahren im Vergleich zu den übrigen OECD-Ländern als hoch einzustufende staatliche FuE-Engagement nunmehr als durchschnittlich charakterisiert werden (Abb. 9): Deutschland ist stark zurückgefallen, allerdings scheint die Talsehle durchschnitten. Etwas anders ist die Einschätzung, wenn man den militärischen Teil der staatlichen FuE-Ausgaben unberücksichtigt lässt, der sich eher aus geopolitischen Konstellationen ergibt als aus den Grundregeln der internationalen Arbeitsteilung. Im zivilen Bereich sind die staatlichen FuE-Anstrengungen in Deutschland als recht hoch anzusehen. Allerdings ist der Verlust an Dynamik dann noch auffälliger.

Unterstützung industrieller FuE nimmt weltweit wieder leicht zu

Der in den westlichen Industrieländern im neuen Jahrhundert steigende staatliche FuE-Ausgabenanteil ist nur in wenigen Ländern darauf zurückzuführen, dass der Staat der Wirtschaft mehr FuE-Finanzierungshilfen gewährt hat. Diese Entwicklung hängt vielmehr hauptsächlich mit der Ausweitung der FuE-Kapazitäten „in den eigenen Reihen“, d. h. in Hochschulen und außeruniversitären Einrichtungen zusammen. Auch in Deutschland haben die Mittel, die innerhalb der gesamten staatlichen FuE-Budgets an die Wirtschaft fließen, von 32 % (1982) auf 14 % (2003) nachgegeben.29 Bis 2005 ist dieser Anteil weiter auf 10 % gesunken.

Eine Möglichkeit, die Verflechtungen zwischen Staat und Wirtschaft bei FuE zu quantifizieren, ist die finanzielle Impulse staatlicher FuE-Förderung im gewerblichen Sektor. Die direkte staatliche Unterstützung von industrieller FuE (durch öffentliche Beschaffungen oder Zuschüsse), variiert stark zwischen den Volkswirtschaften (Tab. 2). Der staatlich finanzierte Anteil an den FuE-Aufwendungen der Wirtschaft beläuft sich in Italien, Großbritannien, Frankreich und den USA auf rund 10 %. Dort macht er sich auch quantitativ klar bemerkbar. Er lag in Deutschland im Jahr 2005 nur noch bei 4,5 % (nach rund 10 % noch Mitte der 90er Jahre und 17 % Anfang der 80er Jahre), im OECD-Mittel bei 7 % (21 % in den 80er Jahren). In den 90er Jahren hatte der finanzielle Staateinfluss im industriellen Technologiebereich hingegen in allen westlichen Industrieländern deutlich nachgelassen, besonders stark dort, wo der militärische Bereich vergleichsweise viele FuE-Ressourcen beanspruchte (USA, Frankreich, Großbritannien), aber auch in Deutschland. Dieses Bild ist jedoch nicht mehr ganz aktuell. Denn in vielen Ländern hat der staatliche Finanzierungsbeitrag auch bei FuE in der Wirtschaft seit 1999/2000 wieder etwas zugenommen. Quantitativ machen sich die gestiegenen staatlichen Beiträge zur Finanzierung von privaten FuE-Ausgaben für die Unternehmen jedoch nur in den USA bemerkbar. Absolut gerechnet gab die US-amerikanische Regierung im Jahr 2005 mit 22 Mrd. $ mehr als das Doppelte für die FuE-Finanzierung in der Wirtschaft aus als die Regierungen in den EU-Ländern zusammengenommen (ohne Berücksichtigung der EU-Mittel selbst).

Tab. 2: Beitrag des Staates zur Finanzierung von FuE in der Wirtschaft der OECD-Länder 1981 bis 2006

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Anteile in % -</td>
<td></td>
</tr>
<tr>
<td>GER</td>
<td>16,9</td>
<td>15,3</td>
<td>10,1</td>
<td>10,2</td>
<td>9,2</td>
<td>7,0</td>
<td>6,7</td>
<td>6,1</td>
<td>5,9</td>
<td>4,5</td>
<td>a</td>
</tr>
<tr>
<td>GBR</td>
<td>30,0</td>
<td>23,0</td>
<td>14,6</td>
<td>10,5</td>
<td>9,6</td>
<td>10,2</td>
<td>7,8</td>
<td>9,6</td>
<td>10,4</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td>24,6</td>
<td>23,4</td>
<td>22,3</td>
<td>12,7</td>
<td>10,4</td>
<td>10,0</td>
<td>8,4</td>
<td>11,1</td>
<td>8,7</td>
<td>10,0</td>
<td></td>
</tr>
<tr>
<td>ITA</td>
<td>8,8</td>
<td>16,9</td>
<td>13,2</td>
<td>16,7</td>
<td>13,1</td>
<td>13,0</td>
<td>14,9</td>
<td>14,1</td>
<td>13,8</td>
<td>11,0</td>
<td>9,7</td>
</tr>
<tr>
<td>NED</td>
<td>7,5</td>
<td>12,6</td>
<td>7,5</td>
<td>6,6</td>
<td>5,4</td>
<td>5,1</td>
<td>5,2</td>
<td>3,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWE</td>
<td>13,6</td>
<td>11,6</td>
<td>10,3</td>
<td>9,5</td>
<td>7,6</td>
<td>7,8</td>
<td>5,8</td>
<td>5,9</td>
<td></td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>FIN</td>
<td>4,2</td>
<td>3,2</td>
<td>5,5</td>
<td>5,6</td>
<td>4,1</td>
<td>4,2</td>
<td>3,4</td>
<td>3,3</td>
<td>3,7</td>
<td>3,8</td>
<td>3,7</td>
</tr>
<tr>
<td>SUI*</td>
<td>1,3</td>
<td>1,8</td>
<td>1,7</td>
<td>2,4</td>
<td>2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,5</td>
</tr>
<tr>
<td>USA</td>
<td>29,7</td>
<td>30,8</td>
<td>21,0</td>
<td>16,3</td>
<td>14,0</td>
<td>11,3</td>
<td>8,4</td>
<td>8,9</td>
<td>9,7</td>
<td>9,7</td>
<td>9,3</td>
</tr>
<tr>
<td>CAN</td>
<td>10,7</td>
<td>12,2</td>
<td>9,9</td>
<td>6,2</td>
<td>5,0</td>
<td>3,5</td>
<td>3,6</td>
<td>2,8</td>
<td>2,2</td>
<td>2,2</td>
<td>2,1</td>
</tr>
<tr>
<td>JPN</td>
<td>1,9</td>
<td>1,6</td>
<td>1,4</td>
<td>1,6</td>
<td>1,3</td>
<td>1,8</td>
<td>1,4</td>
<td>1,4</td>
<td>1,3</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>KOR</td>
<td>0,6</td>
<td>4,8</td>
<td>5,8</td>
<td>8,1</td>
<td>5,3</td>
<td>4,7</td>
<td>4,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU-15</td>
<td>19,3</td>
<td>17,5</td>
<td>13,4</td>
<td>10,7</td>
<td>9,1</td>
<td>8,3</td>
<td>7,5</td>
<td>8,0</td>
<td>7,6</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>21,1</td>
<td>20,9</td>
<td>13,9</td>
<td>11,0</td>
<td>9,6</td>
<td>8,4</td>
<td>6,8</td>
<td>6,8</td>
<td>7,0</td>
<td>6,8</td>
<td>6,8</td>
</tr>
</tbody>
</table>

a) Bruch in der Zeitreihe aufgrund von statistischen/methodischen Umstellungen. - b) vorläufig. - c) Schätzungen.
Quelle: OECD, Main Science and Technology Indicators (2007/2). - Zusammenstellung des NIW.

Die staatliche FuE-Förderung bedient sich jedoch zunehmend anderer Instrumente - weg von Zuschüssen und Beschaffungen, hin zu indirekten ertragsteuerlichen Hilfen (FuE-Zulagen bzw. -Abschreibungen) und zur Stärkung der Verflechtung und Kooperation zwischen Wirtschaft und Wissenschaft. Indirekte FuE-Förderung gilt - wenn richtig eingesetzt - als besonders geeignet, den Sockel FuE-betreibender Unternehmen anzuheben. Deshalb ist zu berücksichtigen, dass die Impulse der staatlichen FuE-Fördermittel dort in dem Maße faktisch unterschätzt werden, wo die Förderung von FuE-Projekten durch steuerliche Hilfen oder Ausweitung des Wissens- und Technologietransfers ergänzt oder ersetzt wird. Diese Hilfen sind einer Finanzierungsrechnung allerdings nur schwer zugänglich. In vielen Ländern sind gerade in letzter Zeit steuerliche FuE-Hilfen neu eingeführt worden30, obwohl der staatliche Finanzierungsbeitrag zu FuE in Klein- und Mittelunternehmen in der Regel bereits deutlich höher ist als bei Großunternehmen (Tab. 3). 2006 waren es 20 Länder, 1995 erst 1231, Deutschland ist allerdings nicht dabei. Vielfach haben sich parallel dazu die Konditionen verbessert, so dass steuerliche FuE-Förderung in diesen Ländern mittlerweile Milliardenbeträge ausmacht: 5,1 Mrd. $ in den USA, was ein Äquivalent von 23 % der direkten FuE-Förderung bedeutet; rund 1 Mrd. $ in Frankreich (43 % der direkten Fördermittel) und Großbritannien (53 %). In Kanada beliefen sich die FuE-bedingten Einnahmenausfälle mit 2,3 Mrd. $ sogar auf das Siebenfache der direkten Förderung.

30 Vgl. zu einer ausführlichen Auseinandersetzung mit steuerlichen FuE-Finanzierungshilfen den Beitrag des ZEW zum Bericht zur technologischen Leistungsfähigkeit Deutschlands 2007 (Licht, Legler, Schmoch u. a., 2007).
Tab. 3: Staatlicher Finanzierungsbeitrag zu FuE in der Wirtschaft der OECD-Länder 2005

- Förderung in % der internen FuE-Aufwendungen -

<table>
<thead>
<tr>
<th>Land</th>
<th>direkte FuE-Förderung insgesamt</th>
<th>KMU</th>
<th>Großunternehmen</th>
<th>direkte FuE-Förderung + steuerliche Förderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVK</td>
<td>26,7</td>
<td>37,5</td>
<td>15,4</td>
<td>26,7</td>
</tr>
<tr>
<td>CAN</td>
<td>2,2</td>
<td>3,4</td>
<td>1,6</td>
<td>21,7</td>
</tr>
<tr>
<td>POR (2003)</td>
<td>5,3</td>
<td>10,4</td>
<td>0,8</td>
<td>17,9</td>
</tr>
<tr>
<td>ESP (2004)</td>
<td>12,5</td>
<td>14,7</td>
<td>8,1</td>
<td>17,8</td>
</tr>
<tr>
<td>AUT (2004)</td>
<td>6,4</td>
<td>11,7</td>
<td>4,5</td>
<td>17,4</td>
</tr>
<tr>
<td>NOR</td>
<td>8,9</td>
<td>8,1</td>
<td>9,8</td>
<td>16,5</td>
</tr>
<tr>
<td>MEX</td>
<td>5,7</td>
<td></td>
<td></td>
<td>15,8</td>
</tr>
<tr>
<td>CZE</td>
<td>14,7</td>
<td>25,2</td>
<td>9,4</td>
<td>14,7</td>
</tr>
<tr>
<td>BEL (2004)</td>
<td>5,8</td>
<td>9,4</td>
<td>3,4</td>
<td>14,1</td>
</tr>
<tr>
<td>ITA (2004)</td>
<td>13,8</td>
<td>15,7</td>
<td>13,8</td>
<td>13,8</td>
</tr>
<tr>
<td>POL</td>
<td>13,7</td>
<td>18,6</td>
<td>11,7</td>
<td>13,7</td>
</tr>
<tr>
<td>FRA (2004)</td>
<td>9,3</td>
<td>7,3</td>
<td>9,7</td>
<td>13,5</td>
</tr>
<tr>
<td>GBR</td>
<td>8,6</td>
<td>4,7</td>
<td>9,5</td>
<td>12,9</td>
</tr>
<tr>
<td>USA</td>
<td>9,7</td>
<td>10,4</td>
<td>9,6</td>
<td>12,0</td>
</tr>
<tr>
<td>NED (2003)</td>
<td>3,4</td>
<td>4,8</td>
<td>2,8</td>
<td>11,4</td>
</tr>
<tr>
<td>AUS (2004)</td>
<td>4,3</td>
<td>6,8</td>
<td>1,6</td>
<td>10,0</td>
</tr>
<tr>
<td>NZL (2003)</td>
<td>10,0</td>
<td></td>
<td></td>
<td>10,0</td>
</tr>
<tr>
<td>IRL</td>
<td>4,1</td>
<td>6,4</td>
<td>2,1</td>
<td>9,0</td>
</tr>
<tr>
<td>GER (2004)</td>
<td>5,9</td>
<td>16,0</td>
<td>5,2</td>
<td>5,9</td>
</tr>
<tr>
<td>SWE (2003)</td>
<td>5,9</td>
<td>5,0</td>
<td>5,6</td>
<td>5,9</td>
</tr>
<tr>
<td>KOR</td>
<td>4,6</td>
<td>12,1</td>
<td>3,1</td>
<td>4,6</td>
</tr>
<tr>
<td>GRE (2003)</td>
<td>4,4</td>
<td>4,5</td>
<td>4,3</td>
<td>4,4</td>
</tr>
<tr>
<td>TUR (2004)</td>
<td>4,2</td>
<td></td>
<td></td>
<td>4,2</td>
</tr>
<tr>
<td>HUN</td>
<td>3,9</td>
<td>16,3</td>
<td>0,9</td>
<td>3,9</td>
</tr>
<tr>
<td>FIN</td>
<td>3,8</td>
<td>7,7</td>
<td>2,8</td>
<td>3,8</td>
</tr>
<tr>
<td>ISL</td>
<td>2,8</td>
<td></td>
<td></td>
<td>2,8</td>
</tr>
<tr>
<td>LUX (2003)</td>
<td>2,5</td>
<td></td>
<td></td>
<td>2,5</td>
</tr>
<tr>
<td>DEN (2003)</td>
<td>2,4</td>
<td>2,9</td>
<td>2,1</td>
<td>2,4</td>
</tr>
<tr>
<td>SUI (2004)</td>
<td>1,5</td>
<td>4,5</td>
<td>0,7</td>
<td>1,5</td>
</tr>
<tr>
<td>JPN</td>
<td>1,2</td>
<td></td>
<td></td>
<td>1,2</td>
</tr>
</tbody>
</table>

KMU: Unternehmen mit im Allgemeinen bis zu 249 Beschäftigten.
Die steuerliche Förderung ist berechnet aus den Einnahmeausfällen auf Grund von FuE-Förderung.

Durchführung von FuE an Hochschulen und wissenschaftlichen Einrichtungen hält Kurs

schaften und Regionen auf forschende multinationale Unternehmen erhöht: Wissenserweiterung hat als Motiv für FuE-Aktivitäten im Ausland an Bedeutung gewonnen.32

- OECD-weit hatte die Wirtschaft in der zweiten Hälfte der 90er Jahre ihre FuE-Kapazitäten im Jahresdurchschnitt noch mit 5,9 % ausgeweitet. Dieses Tempo hat der Staat (3,3 %) mit seinen wissenschaftlichen Einrichtungen nicht mithalten können (\textit{Tab. 1}).

- Nach dem Jahr 2000 hat sich das Blatt wieder deutlich gewendet. Weltweit hat der öffentliche Sektor nicht nur seine Aktivitäten leicht beschleunigt erhöht (3,4 % p. a. bis 2005), sondern auch die Wirtschaft (1,9 %) deutlich überflügelt. Insbesondere in den USA (5,2 %) hat der Staat damit im Endeffekt - wie in den 80er Jahren - kompensatorisch jene Lücke geschlossen, die durch die FuE-Stagnation in der Wirtschaft entstanden ist. Lediglich in Südeuropa ist die Ausweitung der realen FuE-Ausgaben in der Wirtschaft etwas schneller voran gekommen als in öffentlichen Einrichtungen.33

- Auch in Deutschland hat es nach 2000 eine leichte Verschiebung zu Gunsten der öffentlichen Forschung gegeben, nachdem sie in den 90er Jahren überaus stark hinter den Aktivitäten der Wirtschaft zurückgelegen hatte. Sie hat aber mit einer jahresdurchschnittlichen Ausweitung der FuE-Kapazitäten um 1,5 % (Wirtschaft: 0,5 %) die in anderen Ländern zu beobachtende Expansion nicht mitgehen können. Insofern war der Staat mit seinen Instituten kein gutes Vorbild gewesen und hat der insgesamt vergleichsweise schwachen industriellen FuE-Dynamik nur wenig entgegengesetzt. Erst 2006 gab es mit 3 % real wieder eine etwas stärkere Kapazitätsausweitung.34 Inwieweit FuE in öffentlichen Einrichtungen mit den neuerlichen staatlichen Orientierungen auch langfristig zunehmende Bedeutung zugewiesen wird, lässt sich noch nicht 100%ig abschätzen. Entsprechende politische Willenserklärungen gibt es allenthalben. Aber in den USA bspw. sind die öffentlichen Haushalte bereits an Finanzierungsgrenzen gestoßen. So war für 2006 nur noch ein Plus von 3,7 % vorgesehen34, die FuE-Kapazitäten im öffentlichen Sektor wuchsen real nur noch um 0,3 %. Allerdings wurde beginnend ab Haushaltsjahr 2007/8 eine Verdoppelung des NSF-Budgets innerhalb von fünf Jahren beschlossen. In Deutschland mögen der Hochschulpakt, der die Schaffung von 90.000 zusätzlichen Studienplätzen vorsieht, sowie die High Tech-Strategie eine Wende bringen - am internationalen Maßstab gemessen jedoch mit etlichen Jahren Verzögerung.

\textbf{Strukturveränderungen im öffentlichen Sektor mit unterschiedlichen Richtungen}

Der Ansatz ist wichtig, denn der öffentliche FuE-Sektor genießt in Deutschland bei den Unternehmen eine besondere Wertschätzung (\textit{Tab. 4}). Sie finanzieren einen überdurchschnittlich hohen Teil der in öffentlichen Einrichtungen durchgeführten Forschung (12,2 % im Vergleich zu 5 % in der OECD insgesamt, 3,8 % in den USA, 2 % in Japan). Dies sind 5½ %, bezogen auf die unternehmenseigenen FuE-Aufwendungen (OECD: 2,2 %). Nur in wenigen Ländern gibt es intensivere Kooperationsbeziehungen zwischen Wirtschaft und Wissenschaft/Forschung als in Deutschland. Besonders hoch ist die Beteiligung der Wirtschaft an den FuE-Ausgaben der Hochschulen (14,1 %, OECD insgesamt: 6,1 %). Kooperationen zwischen Wirtschaft und Wissenschaft sind in Deutschland also gut eingebürgt, sie haben sich bei FuE gar sehr dynamisch entwickelt. Insofern sind sie aus deutscher Sicht kein Eng-

32 Vgl. Ambos (2005).

33 Dass für Japan im öffentlichen Sektor ein Minus ausgewiesen wird, hängt mit Privatisierungen zusammen, die sich in der Statistik zu Lasten des öffentlichen und zu Gunsten des privaten Sektors auswirken.

34 MSTI 2007/2.
pass, sondern ein klarer Vorteil, der sich auch auf die Attraktivität des FuE-Standorts Deutschland für multinationale Unternehmen mit Standortalternativen auswirken kann.

Tab. 4: Finanzierungsanteil der Wirtschaft an FuE in öffentlichen Einrichtungen in OECD-Ländern 2005 (in %)

<table>
<thead>
<tr>
<th></th>
<th>Hochschulen</th>
<th>wissenschaftliche Einrichtungen</th>
<th>insgesamt</th>
<th>FuE-Mittel der Wirtschaft für Wissenschaft/Forschung in % der eigenen internen FuE-Ausgaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>GER</td>
<td>14,1</td>
<td>9,9 a</td>
<td>12,2 a</td>
<td>5,4 a</td>
</tr>
<tr>
<td>GBR</td>
<td>4,6</td>
<td>9,3</td>
<td>6,0</td>
<td>3,5</td>
</tr>
<tr>
<td>FRA</td>
<td>1,6</td>
<td>7,4</td>
<td>4,4</td>
<td>2,6</td>
</tr>
<tr>
<td>ITA</td>
<td>1,4</td>
<td>2,4</td>
<td>1,8 a</td>
<td>1,7 a</td>
</tr>
<tr>
<td>NED*</td>
<td>6,8</td>
<td>16,1 a</td>
<td>10,0</td>
<td>7,4</td>
</tr>
<tr>
<td>SWE</td>
<td>5,2</td>
<td>1,5 a</td>
<td>4,5 a</td>
<td>1,5 a</td>
</tr>
<tr>
<td>FIN</td>
<td>6,5</td>
<td>12,4</td>
<td>8,5</td>
<td>3,4</td>
</tr>
<tr>
<td>SUI**</td>
<td>8,7</td>
<td>k.A.</td>
<td>k.A.</td>
<td>k.A.</td>
</tr>
<tr>
<td>USA</td>
<td>5,0 b</td>
<td>2,4 a, b</td>
<td>3,8 a, b</td>
<td>1,4 a, b</td>
</tr>
<tr>
<td>CAN</td>
<td>8,3 b</td>
<td>3,8 b</td>
<td>7,3 b</td>
<td>6,2 b</td>
</tr>
<tr>
<td>JPN</td>
<td>2,8</td>
<td>0,7</td>
<td>2,0</td>
<td>0,6</td>
</tr>
<tr>
<td>KOR</td>
<td>15,2</td>
<td>4,3</td>
<td>9,3</td>
<td>2,6</td>
</tr>
<tr>
<td>EU-15 insgesamt</td>
<td>6,6 c</td>
<td>8,1 c</td>
<td>7,1 c</td>
<td>4,0 c</td>
</tr>
<tr>
<td>OECD insgesamt</td>
<td>6,1 b, c</td>
<td>3,5 b, c</td>
<td>5,0 b, c</td>
<td>2,2 b, c</td>
</tr>
</tbody>
</table>

 a) Einschließlich private Organisationen ohne Erwerbszweck. - b) vorläufig. - c) Schätzungen.
Quelle: OECD, Main Science and Technology Indicators (2007/2). - Zusammenstellung, Berechnungen und Schätzungen des NIW.

Im Hinblick auf die Arbeitsteilung zwischen Wirtschaft, Hochschulen und Staat (bzw. Organisationen ohne Erwerbscharakter) bei der Durchführung von FuE zeigen sich erwartungsgemäß ähnliche Konstellationen wie bei der Finanzierung: Staatlich initiierte FuE findet vorwiegend in öffentlich geförderten Einrichtungen statt, privat finanzierte FuE in den Unternehmen. FuE wird daher zum überwiegenden Teil in der Wirtschaft durchgeführt, im Schnitt der OECD-Länder zu 68 % (Tab. 5). Hochschulen folgen mit knapp 18 % noch vor außeruniversitären FuE-Einrichtungen und privaten Organisationen ohne Erwerbszweck (gut 14 %). Selbst zwischen den hochentwickelten Volkswirtschaften streuen die Anteile des öffentlichen Sektors ziemlich stark. In Europa ist der öffentliche FuE-Sektor mit einem Anteil von 35 % an den gesamtgesellschaftlichen FuE-Kapazitäten immer noch wesentlich kräftiger entwickelt als bspw. in den USA (knapp 30 %) und Japan (gut 24 %).
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>69,0</td>
<td>72,2</td>
<td>69,4 a</td>
<td>66,3 c</td>
<td>70,3</td>
<td>69,7</td>
<td>69,3</td>
<td>69,6 b</td>
</tr>
<tr>
<td>Hochschulen</td>
<td>17,1</td>
<td>14,6</td>
<td>16,2 a</td>
<td>18,2 c</td>
<td>16,1</td>
<td>16,9</td>
<td>16,5</td>
<td>16,5 b</td>
</tr>
<tr>
<td>Staat</td>
<td>13,4</td>
<td>12,8</td>
<td>14,4 a</td>
<td>15,5 c</td>
<td>13,6</td>
<td>13,4</td>
<td>14,1</td>
<td>13,9 b</td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>2,8</td>
<td>2,6</td>
<td>1,8</td>
<td>1,3</td>
<td>1,2</td>
<td>1,8</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>GBR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>63,0</td>
<td>64,4 a</td>
<td>67,1</td>
<td>65,0</td>
<td>65,6</td>
<td>63,7</td>
<td>61,6</td>
<td></td>
</tr>
<tr>
<td>Hochschulen</td>
<td>13,6</td>
<td>14,7 a</td>
<td>16,7</td>
<td>19,2</td>
<td>20,6</td>
<td>24,1</td>
<td>25,6</td>
<td></td>
</tr>
<tr>
<td>Staat</td>
<td>20,6</td>
<td>18,3 a</td>
<td>14,5 a</td>
<td>14,6</td>
<td>12,6</td>
<td>10,4</td>
<td>10,6</td>
<td></td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>2,8</td>
<td>2,6</td>
<td>1,8</td>
<td>1,3</td>
<td>1,2</td>
<td>1,8</td>
<td>2,2</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>58,9</td>
<td>58,7</td>
<td>61,5</td>
<td>61,0</td>
<td>62,5 a</td>
<td>62,6</td>
<td>62,6</td>
<td>63,4 b</td>
</tr>
<tr>
<td>Hochschulen</td>
<td>16,4</td>
<td>15,0</td>
<td>15,1</td>
<td>16,7</td>
<td>18,8 a</td>
<td>19,4</td>
<td>18,6</td>
<td>18,1 b</td>
</tr>
<tr>
<td>Staat</td>
<td>23,6</td>
<td>25,3</td>
<td>22,7</td>
<td>21,0</td>
<td>17,3 a</td>
<td>16,7</td>
<td>17,6</td>
<td>17,2 b</td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>1,1</td>
<td>1,0</td>
<td>0,8</td>
<td>1,3</td>
<td>1,4</td>
<td>1,3</td>
<td>1,3</td>
<td>1,3 b</td>
</tr>
<tr>
<td>USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>69,3</td>
<td>71,5</td>
<td>72,5</td>
<td>71,8</td>
<td>75,2</td>
<td>69,3</td>
<td>69,7 b</td>
<td>70,3 b</td>
</tr>
<tr>
<td>Hochschulen</td>
<td>9,7</td>
<td>9,0</td>
<td>14,5</td>
<td>15,2</td>
<td>13,7</td>
<td>14,0</td>
<td>14,1 b</td>
<td>14,3 b</td>
</tr>
<tr>
<td>Staat</td>
<td>18,5</td>
<td>17,2</td>
<td>9,8</td>
<td>9,4</td>
<td>7,0</td>
<td>12,3</td>
<td>12,0 b</td>
<td>11,1 b</td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>2,5</td>
<td>2,4</td>
<td>3,3</td>
<td>3,6</td>
<td>4,1</td>
<td>4,4</td>
<td>4,3 b</td>
<td>4,3 b</td>
</tr>
<tr>
<td>JPN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>60,7</td>
<td>66,8</td>
<td>75,4</td>
<td>70,3</td>
<td>71,0</td>
<td>75,0</td>
<td>76,5</td>
<td></td>
</tr>
<tr>
<td>Hochschulen</td>
<td>24,2</td>
<td>20,1</td>
<td>12,1</td>
<td>14,5</td>
<td>14,5</td>
<td>13,7</td>
<td>13,4</td>
<td></td>
</tr>
<tr>
<td>Staat</td>
<td>11,1</td>
<td>9,1</td>
<td>8,1</td>
<td>10,4</td>
<td>9,9</td>
<td>9,3</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>4,1</td>
<td>3,9</td>
<td>4,4</td>
<td>4,8</td>
<td>4,6</td>
<td>2,1</td>
<td>1,9</td>
<td></td>
</tr>
<tr>
<td>EU-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>62,3 c</td>
<td>64,0 c</td>
<td>63,4 a</td>
<td>62,1 d</td>
<td>64,5 c</td>
<td>63,9 c</td>
<td>63,4 c</td>
<td></td>
</tr>
<tr>
<td>Hochschulen</td>
<td>17,6 c</td>
<td>17,0 c</td>
<td>18,8 a</td>
<td>20,8 d</td>
<td>20,9 c</td>
<td>22,3 c</td>
<td>22,4 c</td>
<td></td>
</tr>
<tr>
<td>Staat</td>
<td>18,8 c</td>
<td>17,8 c</td>
<td>16,9 a</td>
<td>16,3 d</td>
<td>13,7 c</td>
<td>12,8 c</td>
<td>13,1 c</td>
<td></td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>1,4 c</td>
<td>1,2 c</td>
<td>0,9 c</td>
<td>0,9 d</td>
<td>0,9 c</td>
<td>1,0 c</td>
<td>1,1 c</td>
<td></td>
</tr>
<tr>
<td>OECD insgesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>65,4 c</td>
<td>68,3 c</td>
<td>68,8 a</td>
<td>67,2 c</td>
<td>69,5 c</td>
<td>67,5 c</td>
<td>68,0 b c</td>
<td></td>
</tr>
<tr>
<td>Hochschulen</td>
<td>14,5 c</td>
<td>13,0 c</td>
<td>16,3 a</td>
<td>17,5 c</td>
<td>16,0 c</td>
<td>17,7 c</td>
<td>17,7 b c</td>
<td></td>
</tr>
<tr>
<td>Staat</td>
<td>17,9 c</td>
<td>16,4 c</td>
<td>12,4 a</td>
<td>12,5 a</td>
<td>11,8 c</td>
<td>12,2 c</td>
<td>11,8 b c</td>
<td></td>
</tr>
<tr>
<td>Org. o. Erwerbszweck</td>
<td>2,3 c</td>
<td>2,2 c</td>
<td>2,6 c</td>
<td>2,7 c</td>
<td>2,7 c</td>
<td>2,7 c</td>
<td>2,5 b c</td>
<td></td>
</tr>
</tbody>
</table>

*) Anteil GERD durchgeführt von...
 a) Bruch in der Zeitreihe aufgrund von statistischen/methodischen Umstellungen. - b) vorläufig. - c) Schätzungen.
Quelle: OECD: Main Science and Technology Indicators (2007/2). - Zusammenstellung des NIW.

In beinahe jedem europäischen Land gibt es gewichtige außeruniversitäre FuE-Einrichtungen, auch in den USA nimmt deren Bedeutung im öffentlichen FuE-Sektor zu. Dessen Strukturen sind jedoch kaum vergleichbar. In Deutschland besteht zwischen FuE in Hochschulen und parauniversitären Einrichtungen ein gleichgewichtiges Verhältnis. In Frankreich hatten letztere gar lange Zeit eine größere Bedeutung für FuE als Hochschulen. Überwiegend macht sich innerhalb des öffentlichen FuE-Sektors eine gewisse Strukturverschiebung zu Gunsten der Hochschulforschung bemerkbar. Dies ist ein Zeichen für den steigenden Bedarf an Grundlagenwissen. Eine Ausnahme ist Japan, wo parauniversitäre Einrichtungen von staatlichen technologiepolitischen Initiativen stark profitiert haben und wo es Kommerialisierungen von privaten FuE-Organisationen ohne Erwerbszweck gegeben hat. Nennenswerte Veränderungen sind weiterhin zum einen für Großbritannien und Frankreich (Verschiebung zu
Gunsten der Hochschulen) und auf der anderen Seite für die USA (stark aufsteigende Tendenz der außeruniversitären Einrichtungen sowie von privaten FuE-Organisationen ohne Erwerbszweck) zu beobachten.

Deutschland hat von der FuE-Globalisierung profitiert

Für die Ansiedlung und den Ausbau von FuE-Aktivitäten multinationaler Unternehmen im Ausland werden zwei Haupt motive angeführt: Die Markterschließung durch die Ausnutzung von Wissensvorsprüngen des Unternehmens und die Akkumulation von technologischem Wissen. „Heimatbasierte Wissensvorteile“

35 sollen durch FuE im Ausland entweder ausgenutzt (regionale Spezialisierung) oder durch Wissen im Ausland erweitert und ergänzt werden (global sourcing). Triebkraft ist die zunehmende Internationalisierung der Produktion, die vorwiegend über Mergers & Aquisitions (M&A) vorangetrieben wird. Faktisch ist fast die gesamte Auslands-FuE deutscher Unternehmen und das FuE-Engagement ausländischer Unternehmen in Deutschland Ergebnis von Übernahmen und Unternehmensfusionen. Seltener werden FuE-Einrichtungen „auf der grünen Wiese“ errichtet. Markterschließung und Eintritt in neue Geschäftsfelder sind am häufigsten der Anlass, FuE ist dabei meist nur ein Nebenprodukt. Im Zuge der Konsolidierung kann es jedoch später zu Anpassungsprozessen und Umskulturierungen im FuE-Sektor der Unternehmen kommen, die die einzelnen Standorte unterschiedlich treffen.

- Deutschland ist mit einem FuE-Aufkommen von 12,6 Mrd. € nach den USA (25,5 Mrd. €) weltweit vor Großbritannien (7,7 Mrd. € 2004) der zweitgrößte FuE-Standort für ausländische Unternehmen. 36 Gemessen am Anteil ausländischer Unternehmen an den gesamten inländischen FuE-Aufwendungen ist das Engagement von ausländischen Unternehmen in Großbritannien mit 39 % jedoch höher als in Deutschland (26 %) und den USA (15 %).
- Deutschland war 2004 zudem mit einem Anteil von 18,2 % (32.600 Personen) am im Ausland stationierten FuE-Personal hinter Großbritannien (18,7 %) der wichtigste Standort für US-amerikanische Tochterunternehmen. Hierzulande betreiben US-Unternehmen im Vergleich zu an-

36 Berechnungen des DIW aus verschiedenen Quellen (OECD, UNCTAD, US DoC, WSV).

Tab. 6: FuE-Aktivitäten deutscher Unternehmen im Ausland und ausländischer Unternehmen in Deutschland 2001 bis 2005

<table>
<thead>
<tr>
<th></th>
<th>Anteil der Auslands-FuE-Aufwendungen deutscher Unternehmen an ihren globalen FuE-Aufwendungen</th>
<th>FuE-Aufwendungen ausländischer Unternehmen in % der FuE-Aufwendungen in Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemische Industrie</td>
<td>28,2 25,0 26,4</td>
<td>27,3 27,4 27,4</td>
</tr>
<tr>
<td>darunter: Pharmazeutische Industrie</td>
<td>41,9 37,8 38,1</td>
<td>29,0 32,6 32,0</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>11,4 16,4 15,6</td>
<td>20,1 21,0 21,0</td>
</tr>
<tr>
<td>H. v. Büromaschinen, DV-Geräten, Elektrotechnik, Feinmechanik, Optik</td>
<td>29,8 29,5 24,7</td>
<td>28,7 29,2 26,4</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>27,0 20,2 26,0</td>
<td>26,5 24,4 26,4</td>
</tr>
<tr>
<td>darunter: Kraftfahrzeugbau</td>
<td>. 20,2 26,4</td>
<td>. 15,2 15,0</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>26,7 24,3 24,4</td>
<td>26,5 26,4 26,4</td>
</tr>
</tbody>
</table>

• Die Bedeutung ausländischer Unternehmen für die FuE-Kapazitäten ist in der Chemieindustrie mit 32 % - darunter die Pharmaindustrie mit 40 % - am höchsten (Tab. 6). Aber auch in der Computerindustrie/Elektrotechnik/Feinmechanik und im Fahrzeugbau (jeweils 26 %), hier vor allem außerhalb des Kraftfahrzeugbaus, haben diese Unternehmen ein großes FuE-Gewicht.

• Ausländische Unternehmen setzen in Deutschland bei ihren FuE-Aktivitäten zunehmend die gleichen sektoralen FuE-Schwerpunkte wie ihre einheimischen Wettbewerber. Zwar liegt der Anteil ausländischer Anbieter an den FuE-Ausgaben im Automobilbau unter dem Durchschnitt (Tab. 6). Er ist jedoch eine der Branchen, auf die ausländische Unternehmen ihre FuE in Deutschland konzentrieren (Tab. 7) und hält in der Dynamik mit. Ausländische Unternehmen sind auch im sonstigen Fahrzeugbau (Luft- und Raumfahrzeug-, Schiff-, Schienenfahrzeugbau) sehr FuE-aktiv. In der Pharmaindustrie, wo 40 % der inländischen FuE-Aufwendungen von ausländischen Unternehmen getragen werden, war ihr Engagement jedoch zuletzt leicht rückläufig (während das der deutschen Unternehmen im Inland zunahm).

Tab. 7: Struktur der FuE-Aufwendungen von deutschen und ausländischen Unternehmen in Deutschland 2005

<table>
<thead>
<tr>
<th></th>
<th>Deutsche Unternehmen</th>
<th>Ausländische Unternehmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemische Industrie ohne Pharmacie</td>
<td>7,5</td>
<td>5,3</td>
</tr>
<tr>
<td>Pharmazeutische Industrie</td>
<td>7,7</td>
<td>14,7</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>9,9</td>
<td>7,4</td>
</tr>
<tr>
<td>H. v. Büromaschinen, DV-Geräten, Elektrotechnik, Feinmechanik, Optik</td>
<td>20,1</td>
<td>20,1</td>
</tr>
<tr>
<td>Kraftfahrzeugbau</td>
<td>37,9</td>
<td>18,7</td>
</tr>
<tr>
<td>übriger Fahrzeugbau</td>
<td>0,9</td>
<td>20,2</td>
</tr>
<tr>
<td>Dienstleistungen</td>
<td>8,5</td>
<td>5,1</td>
</tr>
<tr>
<td>übrige</td>
<td>7,4</td>
<td>8,5</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

• Große Unternehmen, die im gleichen Markt im Wettbewerb stehen, müssen auch ähnlich intensiv in FuE und Innovationen investieren. Die FuE-Intensität ausländischer Unternehmen ähnelt daher nach einem kontinuierlichen Konvergenzprozess mittlerweile derjenigen der Unternehmen in einheimischem Besitz (Abb. 10).37 In der Kfz-Industrie und im übrigen Fahrzeugbau sowie im Maschinenbau forschen und entwickeln sie im Durchschnitt inzwischen mit etwas höherer Intensität, d. h. sie konzentrieren sich in Deutschland im Vergleich zu ihren hiesigen Wettbewerbern stärker auf FuE als auf Produktionsaktivitäten. Dies deutet in diesen Branchen- und Technologiefeldern auf sehr gute Bedingungen für FuE am Standort Deutschland hin.

Abb. 10: FuE-Personalintensität deutscher und ausländischer forschender Unternehmen in ausgewählten Industriezweigen in Deutschland 1993 bis 2005 in %

Deutsche Auslands-FuE stagniert

Um die Weltmärkte zu erschließen, müssen deutsche Unternehmen auch vor Ort in FuE investieren. Denn hochwertige Produkte und Technologien lassen sich nur zu einem gewissen Grad standardisieren und exportieren. Um auf die spezifischen Anforderungen der Kunden eingehen und rasch auf

Bis 2005 wuchsen lediglich die FuE-Aufwendungen deutscher Unternehmen der Pharma- und Automobilindustrie im Ausland schneller als im Inland, im Maschinenbau und in der Computerindustrie/Elektrotechnik/Feinmechanik war es umgekehrt. Es finden sich somit kaum Anhaltspunkte dafür, dass Unternehmen ihre FuE im Ausland auf Kosten der Aktivitäten in Deutschland ausweiten. Im vergangenen Jahrzehnt sind die FuE-Gesamtauwendungen bei den auslandsaktiven deutschen Unternehmen im Inland sogar schneller gestiegen als bei den Unternehmen ohne FuE im Ausland. Ein deutsches FuE-Standortproblem zeichnet sich aus dieser Sichtweise nicht ab. Eher wird immer deutlicher, dass sich das weltweite Innovationspotenzial der deutschen Unternehmen - also das FuE-Aufkommen im In- und Ausland - vergleichsweise wenig dynamisch entwickelt.

- Durch Übernahme und Aufbau von FuE-Einrichtungen im Ausland hat der deutsche Automobilbau seine Präsenz auf den großen Märkten in Produktion und Forschung besonders deutlich verstärkt. Fast 100 % der FuE-Aufwendungen wurden 2005 durch Unternehmen abgedeckt, die sowohl im Inland als auch im Ausland FuE betreiben. Gleichzeitig haben Automobilhersteller als einzige Branche ihre FuE-Kapazitäten in Deutschland kräftig ausgeweitet (siehe hinten). Die Globalisierung dieses Wirtschaftszweiges stärkt offensichtlich den heimischen FuE-Standort. 2005 gab der Automobilbau im Branchenvergleich mit 4,8 Mrd. € auch den höchsten Betrag für FuE im Ausland aus: Dies sind 26,5 %, was eine vergleichsweise niedrige FuE-Globalisierungsquote bedeutet, die zudem leicht rückläufig ist. Die Auslands-FuE-Standorte des deutschen Automobilbaus liegen schwerpunktmäßig sowohl in Europa als auch in den USA.

38 Hierbei dürfte auch die Abwertung des US-Dollar gegenüber dem Euro und damit eine niedrigere „Bewertung“ der FuE-Aufwendungen im Ausland eine Rolle gespielt haben.
Unternehmen des Maschinenbaus sind bisher zwar weniger im Ausland FuE-aktiv (15,6 %), jedoch mit deutlich steigender Tendenz (2001: 11,4 %). Diejenigen Maschinenbauer, die im Ausland FuE betreiben, haben inzwischen im Durchschnitt einen ähnlichen Internationalisierungsgrad (27 %) erreicht wie der Fahrzeugbau und die Computerindustrie/Elektrotechnik/Feinmechanik.

Im letztgenannten Sektor ist der Auslands-FuE-Anteil deutscher Unternehmen zudem klar rückläufig (24,7 % nach 29,8 % im Jahr 2001). Unternehmen aus diesen Branchen beginnen in jüngster Zeit verstärkt mit FuE in aufholenden Schwellenländern, vor allem in den Ländern Asiens.

FuE-Globalisierungspause in den USA

Tab. 8: Jährliches Wachstum der realen FuE-Aufwendungen ausländischer Tochterunternehmen in den USA 1994-2005

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Insgesamt</th>
<th>FRA</th>
<th>GER</th>
<th>NED</th>
<th>SWE</th>
<th>SUI</th>
<th>GBR</th>
<th>JPN</th>
<th>Nachrichtlich: US-Mütter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>31694</td>
<td>4063</td>
<td>6287</td>
<td>1597</td>
<td>282</td>
<td>4334</td>
<td>5954</td>
<td>3447</td>
<td>152364 3)</td>
</tr>
<tr>
<td>Durchschnitt in %</td>
<td>8,2</td>
<td>9,5</td>
<td>17,2</td>
<td>9,1</td>
<td>18,3</td>
<td>5,5</td>
<td>7,1</td>
<td>7,7</td>
<td>6,6</td>
</tr>
<tr>
<td>2004</td>
<td>3447</td>
<td>4334</td>
<td>5954</td>
<td>3447</td>
<td>152364 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aus der Sicht deutscher multinationaler Unternehmen hat Europa in den letzten Jahren etwas an Boden gewonnen; dennoch entfällt knapp die Hälfte ihrer FuE-Aufwendungen im Ausland auf die USA. Sie hatten 1999 den bisher höchsten Wert (Tab. 8) erreicht, lagen danach mehrere Jahre bei knapp 6 Mrd. US-$ und sind zuletzt wieder etwas gestiegen. Mit einem FuE-Aufwand von insgesamt etwa 6,3 Mrd. $ im Jahre 2005 und einem FuE-Personalbestand von 29.200 verfügen deutsche Unternehmen in den USA über das größte FuE-Potenzial ausländischer Unternehmen, dicht gefolgt von britischen Un-

unternehmen (24.300 FuE-Beschäftigte), die zuletzt stark aufgeholt haben. Schweizer Unternehmen haben sich jüngst auf den dritten Platz geschoben, gefolgt von französischen.

Die Entwicklung der FuE-Intensität unterscheidet sich zwischen ausländischen und einheimischen multinationalen Unternehmen in den USA kaum (Abb. 11), Unterschiede sind überwiegend auf unterschiedliche Branchenstrukturen zurückzuführen. Deutsche Unternehmen weisen unter allen ausländischen Unternehmen in den USA hinter schweizerischen die höchste FuE-Intensität auf. Dies zeigt, dass bei den FuE-Auslandsinvestitionsmotiven deutscher Unternehmen neben der Markterschließung auch der Wissenserwerb, vor allem bei Spitzenotechnologien, ganz oben steht, insbesondere in den USA. Insgesamt hat das Motiv des Wissenserwerbs an ausländischen FuE-Standorten in multinationalen Unternehmen seit Ende der 90er Jahre zugenommen.

Abb. 11: FuE-Intensität ausländischer und einheimischer multinationaler Unternehmen in den USA 1998 bis 2005

Weitere Diversifizierung der FuE-Standorte zu erwarten

Die grenzüberschreitende Vernetzung von FuE-Standorten der Unternehmen und der Austausch von Wissen fanden bislang vorwiegend innerhalb und zwischen den wissensintensiven Regionen USA und Westeuropa statt. 59 % der FuE-Gesamtaufwendungen ausländischer Tochterunternehmen in Deutschland entfallen auf europäische Unternehmen (darunter 47 % aus Mitgliedsländern der EU) und 38 % auf nordamerikanische Unternehmen (fast ausschließlich US-Unternehmen), die sich besonders im Fahrzeugbau in FuE engagieren. FuE-Aufwendungen von Unternehmen aus Asien und der restlichen Welt fallen in Deutschland bisher kaum ins Gewicht; ihr Anteil liegt bei 2 %.

Tab. 9: Verbreitung und Ausweitung von FuE-Aktivitäten deutscher Unternehmen im Ausland 2005-2007

<table>
<thead>
<tr>
<th>FuE-Aktivitäten 2005 im Ausland</th>
<th>geplante Ausweitung im Ausland 2006/07</th>
</tr>
</thead>
<tbody>
<tr>
<td>insg.</td>
<td>West-europa</td>
</tr>
<tr>
<td>Chemieindustrie</td>
<td>15</td>
</tr>
<tr>
<td>Pharmaindustrie</td>
<td>15</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>7</td>
</tr>
<tr>
<td>Elektroindustrie</td>
<td>12</td>
</tr>
<tr>
<td>Instrumententechnik</td>
<td>10</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>7</td>
</tr>
<tr>
<td>EDV/Telekommunikation</td>
<td>5</td>
</tr>
<tr>
<td>technische Dienste</td>
<td>11</td>
</tr>
</tbody>
</table>

Lateinamerika, Afrika, Ozeanien; inkl. Angaben "weltweit".
Angaben in % aller Unternehmen mit 5 und mehr Beschäftigten. Regionale Zuordnung der Auslandsaktivitäten auf Basis der Angaben zu den wichtigsten Ländern, in denen die jeweiligen Auslandsaktivitäten stattfinden bzw. geplant sind, Mehrfachnennungen möglich.
Quelle: ZEW, Mannheimer Innovationspanel (Erhebung 2006). - Berechnungen des ZEW.

31 Berechnungen des DIW auf Basis von US DoC-Daten.

FuE in deutschen Klein- und Mittelunternehmen: Kritische Entwicklung

In Deutschland werden die FuE-Aktivitäten mit überwiegender Mehrheit von Großunternehmen durchgeführt: 81,5 % der FuE-Gesamtaufwendungen in Höhe von 48 Mrd. € und 73,3 % des FuE-Personals entfallen auf Unternehmen mit 1.000 und mehr Beschäftigten. Eine derart hohe Ausrichtung auf Großunternehmen nennt man auch in den anderen forschungsreichen Ländern wie Japan und den USA.

Großunternehmen entscheiden somit über das gesamtwirtschaftliche FuE-Volumen und die FuE-Intensität der Wirtschaft. Die Masse der Klein- und Mittelunternehmen bestimmt hingegen die Breite, mit der FuE in der Wirtschaft verankert ist. Insofern ist für die Innovationspolitik die FuE-Beteiligung eine kritische Größe. Klein- und Mittelunternehmen sind häufig die Speerspitze bei der Entwicklung

Tab. 10: FuE-Personalintensität und FuE-Beteiligung in Bergbau und Verarbeitender Industrie nach Unternehmensgrößenklassen in Deutschland 1995 bis 2005

| Beschäftigten-
<table>
<thead>
<tr>
<th>Größe</th>
<th>FuE-Intensität*</th>
<th>FuE-Beteiligung**</th>
<th>FuE-Intensität</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forschender Unternehmen</td>
<td>aller Unternehmen</td>
<td>FuE-Intensität</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>unter 100</td>
<td>8,8</td>
<td>9,1</td>
<td>8,6</td>
</tr>
<tr>
<td>100 bis unter 500</td>
<td>4,4</td>
<td>4,8</td>
<td>4,5</td>
</tr>
<tr>
<td>500 bis unter 1.000</td>
<td>4,7</td>
<td>5,7</td>
<td>5,1</td>
</tr>
<tr>
<td>1.000 und mehr</td>
<td>7,2</td>
<td>8,1</td>
<td>8,9</td>
</tr>
<tr>
<td>insgesamt</td>
<td>6,6</td>
<td>7,4</td>
<td>7,5</td>
</tr>
</tbody>
</table>

*) FuE-Personalaufteilung in % der Beschäftigten insgesamt. - **) Forschende Unternehmen in % der Unternehmen insgesamt.

Die FuE-Tätigkeit konzentriert sich von Jahr zu Jahr auf immer weniger Unternehmen, denn die Zahl von forschenden industriellen Klein- und Mittelunternehmen hat stark abgenommen: 1995 bspw. hatten noch 21 % der kleinen Industrieanalysen (mit unter 100 Beschäftigten) FuE-Aktivitäten gemeldet, seit 2003 sind es nur noch 12 %. FuE-Aktivitäten haben damit in der Wirtschaft an Breite verloren, wobei sich dieser Abschmelzungsprozess in jüngster Zeit verlangsamt hat. Im internationalen

Tab. 11: Struktur der FuE-Aktivitäten der Wirtschaft in Deutschland 1979 bis 2005

<table>
<thead>
<tr>
<th>Westdeutschland</th>
<th>Gesamtdeutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finanzierung von FuE in der Wirtschaft</td>
<td></td>
</tr>
<tr>
<td>Wirtschaft</td>
<td>83,3</td>
</tr>
<tr>
<td>eigenes Unternehmen</td>
<td></td>
</tr>
<tr>
<td>andere Unternehmen</td>
<td></td>
</tr>
<tr>
<td>Staat</td>
<td>14,2</td>
</tr>
<tr>
<td>davon in Klein- und Mittelunternehmen</td>
<td>7,5</td>
</tr>
<tr>
<td>Unternehmen > 500</td>
<td>14,1</td>
</tr>
<tr>
<td>Ausland</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Anteil am FuE-Personal in den Unternehmen															
weniger als 100 Beschäftigte	4,1	6,0	9,0	10,2	8,7	7,7	4,9	5,7	7,7	8,1	7,6	6,3	5,7	6,3	
100 bis unter 500 Beschäftigte	9,5	10,1	10,3	10,4	9,3	9,1	9,7	12,1	11,0	11,7	11,4	11,2	11,6	11,8	
500 bis unter 1.000 Beschäftigte	6,8	4,6	4,5	4,5	4,9	4,9	5,0	6,1	5,8	6,2	6,9	7,1	6,8	7,9	
1.000 und mehr Beschäftigte	79,6	79,3	76,2	74,9	77,1	78,3	80,4	76,1	75,6	75,1	74,6	75,3	74,8	73,3	

Anteil externer FuE-Aufwendungen der Wirtschaft															
insgesamt	5,7	7,7	10,1	9,3	8,6	9,2	10,1	10,2	12,2	10,5	13,3	14,9	17,0	18,3	20,2
Klein- und Mittelunternehmen	6,0	6,9	18,4	14,3	11,1	8,1	9,8	8,5	8,1	8,4	8,2	11,9	10,5		
Unternehmen > 500	4,7	7,1	7,9	7,9	8,0	9,3	10,1	12,4	10,5	14,1	15,5	17,5	19,1	21,5	

Durchführung externer FuE der Wirtschaft															
Wirtschaft	70,3	63,6	70,5	69,5	67,1	64,6	62,6	62,9	65,4	59,9	64,0	68,3	71,0	61,7	59,2
Hochschulsektor	8,5	10,6	9,1					10,4	9,0	13,1	9,3	7,4	7,7	10,5	11,3
sonstige FuE-Einrichtungen	20,7	25,6	20,0	9,4	10,9	10,0	20,8	8,8	6,8	8,6	5,6	4,1	4,0	5,0	10,1
sonstige Inländer	1,1	1,0	1,0	0,4	0,5	0,4	1,5	1,3	1,3	1,0	0,9	0,8	1,1	1,5	
Ausland	9,4	10,8	9,5	12,6	11,0	15,8	16,6	16,4	17,4	18,9	18,7	16,4	22,2	18,5	

Struktur der internen FuE-Aufwendungen der Unternehmen															
Personal	60,1	58,5	58,4	58,0	58,3	60,1	57,9	57,9	59,9	59,8	61,5	59,2	58,5	58,6	60,8
Sachmittel	30,4	31,3	31,6	31,0	30,4	31,0	32,8	32,9	33,0	33,4	31,2	32,2	33,4	32,9	31,0
Investitionen	9,4	9,9	10,0	10,0	11,0	8,9	9,3	9,3	7,1	6,8	7,3	8,6	8,1	8,5	8,1

Struktur des FuE-Personals in Unternehmen															
Wissenschaftler/Ingenieure	30,9	31,8	32,8	34,0	36,3	38,2	41,4	43,8	43,9	45,7	46,2	48,7	51,3	54,3	54,8
Techniker	31,8	30,1	30,9	31,4	30,7	29,7	28,5	26,9	27,9	27,6	27,6	28,3	24,1	23,5	25,0
sonstige	37,3	36,1	36,3	34,6	33,0	32,1	30,1	29,3	28,2	26,7	26,1	25,1	24,6	22,2	20,2

Anteil von Unternehmen im ausländischen Besitz															
Anzahl FuE im Ausland an den globalen Gesamtaufwendungen deutscher Unternehmen	16	17	17	18	26	26	26	23*	23*	25*	26*	24,3	24,4		
Anteil von FuE-Aufwendungen der Unternehmen mit Auslandsforschung															

Quelle: Eurostat, 3rd & 4th Community Innovation Survey. - Berechnungen des ZEW.

47 Vgl. z. B. die MIP-Erhebungen, Rammer (2007).
49 Das MIP weist für die Periode 2002-2004 nur 1 % der Unternehmen aus forschungsintensiven Industrien aus, die FuE-Aufträge nach außen vergeben, ohne gleichzeitig eigene FuE-Kapazitäten zu haben und die dennoch innovieren. 48 % betreiben hingegen nur interne FuE, 34 % verstärken interne FuE-Aktivitäten durch Aufträge an FuE-Kooperationspartner. Rammer, Blind u. a. (2007).
FuE im Dienstleistungssektor nimmt in Deutschland zu

Wissensintensive Dienstleistungen gewinnen sowohl für die gesamtwirtschaftliche Wertschöpfung als auch als Innovationsmotor an Bedeutung. Sie tragen vor allem als Anwender innovativer Technologien zur Diffusion bei, definieren aber auch neue Anforderungen an Technologien. Dies hat auch Rückwirkungen auf die Industrieforschung gehabt: Hochwertige Dienstleistungen stehen vor allem mit jenen Industriezweigen in Kontakt, in denen besonders anspruchsvoll - und damit aufwändig - FuE betrieben wird (Spitzentechnologie: Biotechnologie/Pharmazie, Elektrotechnik/Nachrichtentechnik, Instrumente, Luft- und Raumfahrt). Zum anderen intensiviert sich aus Effizienzgründen (Qualitäts- und Spezialisierungsvorteile) die Arbeitsteilung zwischen der Industrie und spezialisierten FuE-Planung sowie Ingenieur- und sonstigen technischen Dienstleistungen. In der deutschen Wirtschaft wird deshalb mehr und mehr Wert auf FuE für hochwertige Dienstleistungen gelegt; dennoch liegt Deutschland im Weltmaßstab auf diesem Feld noch weit hinten (Tab. 12).

Tab. 12: Struktur der FuE-Ausgaben 2004 in der OECD-19

<table>
<thead>
<tr>
<th>Sektor</th>
<th>Vertikal-</th>
<th>Anteile von... an der OECD-19</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OECD</td>
<td>USA</td>
</tr>
<tr>
<td>Spitzentechnologie</td>
<td>42,2</td>
<td>49,3</td>
</tr>
<tr>
<td>Pharmazeutika</td>
<td>12,3</td>
<td>55,2</td>
</tr>
<tr>
<td>Büromaschinen/EDV</td>
<td>4,2</td>
<td>29,3</td>
</tr>
<tr>
<td>Nachrichtentechnik</td>
<td>14,0</td>
<td>42,4</td>
</tr>
<tr>
<td>MSR-Technik</td>
<td>6,5</td>
<td>61,6</td>
</tr>
<tr>
<td>Luft- und Raumfahrzeuge</td>
<td>5,1</td>
<td>55,1</td>
</tr>
<tr>
<td>Gehobene Gebrauchstechnologie</td>
<td>25,9</td>
<td>27,9</td>
</tr>
<tr>
<td>Industriechemikalien</td>
<td>5,0</td>
<td>30,2</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>5,4</td>
<td>26,2</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>3,1</td>
<td>18,5</td>
</tr>
<tr>
<td>Automobilbau</td>
<td>11,8</td>
<td>28,6</td>
</tr>
<tr>
<td>übrige Fahrzeuge</td>
<td>0,5</td>
<td>64,8</td>
</tr>
<tr>
<td>Übrige Industriezweige</td>
<td>9,5</td>
<td>40,1</td>
</tr>
<tr>
<td>Dienstleistungen</td>
<td>20,5</td>
<td>62,6</td>
</tr>
<tr>
<td>übrige Wirtschaft</td>
<td>1,9</td>
<td>18,6</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100,0</td>
<td>45,0</td>
</tr>
</tbody>
</table>

1) Anteil der sektoralen internen FuE-Aufwendungen an den Aufwendungen der Wirtschaft in %.
Quelle: OECD, ANBERD Database (DSTI/EAS Division). - NSF. - Berechnungen und Schätzungen des NIW.

Technologische FuE ist für Dienstleistungsunternehmen oft schwer zu identifizieren, denn das statistische Messkonzept ist bei FuE sehr stark an den Innovationsaktivitäten der Industrie orientiert. Im Dienstleistungssektor hängen Innovationsaktivitäten auch deutlich weniger stark von FuE-Aktivitäten ab als Innovationen in der Industrie. In der Statistik erscheinen im Jahr 2005 mit 32.750 FuE-

Beschäftigten denn auch nur 10,9 % des FuE-Personals der Unternehmen insgesamt im Dienstleistungssektor (Tab. 11). Nähme man IfGs hinzu, die ja ebenfalls Dienstleistungsfunctionen ausüben, käme man auf 36.700 Personen (12,1 %). 80 % sind davon im Sektor „übrige (unternehmensbezogene) Dienstleistungen“ (Datenbanken/-verarbeitung: 13.800, Forschung/Entwicklung: 9.900 und sonstige unternehmensorientierte Dienstleistungen: 4.950) tätig, 2.100 - mit stark nachlassender quantitativer Bedeutung - im Sektor Verkehr/Nachrichtenübermittlung.

Sektoraler Strukturwandel bei industrieller FuE: Automobil und Spitzentechnik profi
tieren

ger und anspruchsvoller Nachfrage, Akzeptanz, Regulierungen, Wettbewerbsintensität u. ä. widerspiegelt.

Abb. 13: FuE-Intensität\(^1\) in forschungsintensiven Industriezweigen 2004\(^2\)

- OECD\(^3\) und Deutschland -

Spitzentechnologie

<table>
<thead>
<tr>
<th>Industriezweig</th>
<th>OECD</th>
<th>Deutschland</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA = Pharmazeutische Erzeugnisse; LRB = Luft- und Raumfahrzeugbau; NRT = Nachrichtentechnische Geräte und Einrichtungen; BMD = Büromaschinen, Datenverarbeitung; MSR = Mess, Kontrol-, Navigations- und ähnliche Instrumente und Vorrichtungen; FAB = sonstiger Fahrzeugbau; KFZ = Kraftwagen und Kraftwagenteile; ELT = Geräte der Elektrizitätserzeugung, -Verteilung u. ä.; MAB = Maschinenbau.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) interne FuE-Ausgaben in % des Produktionswertes. - 2) oder letzter verfügbares Jahr.
3) 19 OECD-Länder: GER, FRA, GBR, ITA, BEL, NED, DEN, IRL, ESP, SWE, FIN, NOR, POL, CZE, CAN, USA, JPN, KOR, AUS.

Quelle: ANBERD-Datenbank. - STAN-Datenbank. - EUKLEMS-Datenbank. - Berechnungen und Schätzungen des NIW.

Ein Bild von den gewaltigen Umstrukturierungsprozessen in der deutschen Industrieforschungslandschaft mag die jüngste Vergangenheit vermitteln. So waren im Jahr 2005 in der Verarbeitenden Industrie zwar 1,5 % weniger Personen in FuE tätig als 2001 (4.500), dennoch gab es unterhalb dieses an sich kaum nennenswerten Saldos erhebliche Turbulenzen\(^5\):

- Nur in wenigen Industriezweigen wurde mehr FuE-Personal eingesetzt: in Gummi-/Kunststoffverarbeitung 1.050, im Pflanzenschutz 900, bei Kraftmaschinen 900, bei Waffen 600, im spezifischen...

\(^{55}\) Berechnungen auf der Basis von Angaben des WSV.

- Das Automobilbau-FuE-Plus ist jedoch durch den Einbruch in Elektronik/Medientechnik (9.600) fast vollständig substituiert worden. Unter den übrigen (vielen) Branchen, die FuE abgebaut haben, ragen vor allem die Chemische Industrie (4.700, trotz Pflanzenschutz), Metallverarbeitung (1.300), übriger Maschinenbau (2.600), MSR-Technik/Optik/Uhren (900), Bahnindustrie (650), Computerbranche (450) und Elektrotechnik (200) negativ heraus.

Es ist sicher zu früh, aus der kurzen Periode 2001 bis 2005 heraus zu extrapolieren. Wenn man jedoch die FuE-Personalentwicklung mit der allgemeinen Industriebeschäftigungsentwicklung vergleicht, dann hat sich die Grundstimmung der Unternehmen gegenüber FuE wieder verbessert. Zudem ist der sektorale Strukturwandel zu Gunsten der forschungsintensiven Industrie ein Faktor, der künftig - für sich genommen - zu einem höheren Bedarf an FuE-Personal führen könnte.56 Genau genommen waren es jedoch hauptsächlich das Wachstum der Pharmazeutischen Industrie und des Automobilbaus sowie die dort forcierten spezifischen FuE-Anstrengungen, die die Nachfrage nach Hochqualifizierten für FuE-Zwecke hoch gehalten haben.

Noch einmal aus einer anderen Perspektive: Der FuE-Aufschwung der 80er Jahre ist in der Breite der Wirtschaft angegangen worden - in den letzten Jahren ist der Prozess jedoch sehr selektiv (Automobil) und überwiegend in die Spitze verlaufen. Es ist klar, dass ein schneller FuE-Strukturwandel, der massiv die Verteilung auf die Wirtschaftszweige verändert, nicht von Klein- und Mittelunternehmen ausgehen kann. Der FuE-Aufschwung der 90er Jahre war in Deutschland daher mit einer Konzentration auf immer weniger (Groß-)Unternehmen verbunden.

Verschiebungen in der Hierarchie der FuE-Intensitäten

Die Rangfolge der Industrien nach FuE-Intensität ist in den meisten Ländern recht ähnlich57, sie hat sich auch jeweils in die gleiche Richtung verändert, so auch in Deutschland.

Dass die Verarbeitende Industrie zumindest im Zehnjahresvergleich dennoch eine leichte Steigerung der FuE-Intensität aufweist, mag deshalb auf den ersten Blick nicht einsichtig sein. Dieses Ergebnis hängt mit der hohen Bedeutung des Automobilbaus zusammen: Er ist zum einen deutlich stärker gewachsen als viele andere Industriezweige und hat zum anderen im Expansionsprozess seine FuE-Kapazitäten auch noch überdurchschnittlich stark und über dieses Wachstum hinaus ausgeweitet. Dies wird besonders deutlich, wenn man die Strukturen über ein Vierteljahrhundert betrachtet: Der Fahrzeugbau ist unter den großen Technologiesektoren der einzige signifikante Strukturwandlungsgewinner: Sein Anteil am FuE-Personal hat seit 1979 um 15 Prozentpunkte auf über 32 % zugelegt. Dies ging zu Lasten aller anderen Industriezweige. Denn ansonsten konnte nur der Dienstleistungssektor kräftig zulegen (Tab. 11).

Staatliche Finanzierungsbeiträge zu FuE in der Wirtschaft in Deutschland auf Talfahrt

Allenthalben fördert der Staat mehr oder weniger massiv und im Zeitablauf nicht immer stabil den FuE-Prozess in der Wirtschaft mit unterschiedlichen Instrumenten und Anreizen. Der Staat ist auch in Deutschland an der Finanzierung der industriellen FuE beteiligt - nach den Angaben der Wirtschaft im Jahr 2005 mit gut 1,5 Mrd. €. Der staatliche Finanzierungsbeitrag zu den FuE-Gesamtaufwendun-
Die Luft- und Raumfahrzeugindustrie allein absorbiert mit 705 Mio € fast die Hälfte der gesamten staatlichen FuE-Ausgaben an die Wirtschaft. In der Spitzentechnik wird ansonsten nur FuE in der Waffen- und Munitionsindustrie besonders intensiv gefördert (mit 36 % der FuE-Gesamtaufwendungen dieses Sektors). Dies weist auf typische Betätigungsfelder des Staates, also auf eine eigenständige Zielstruktur hin. Im Schnitt aller Spitzentechniksektoren werden - durch das starke staatliche Engagement in diesen beiden Industrien forciert - 6,4 % der FuE-Gesamtaufwendungen durch den Staat finanziert; repräsentativ ist dies jedoch nicht (Tab. 13): In der Gehobenen Gebrauchstechnik sind es nur 0,7 %, in niedriger und mittlerer Technologie 1,3 %.

Naturgemäß entfällt der überragende Teil des staatlichen Finanzierunganteils (78 %) auf Großunternehmen. Allerdings kann seit Mitte der 90er Jahre nicht mehr generell davon ausgegangen werden, dass die staatlichen Präferenzen in Deutschland sehr stark zu Gunsten von Großunternehmen verzerrt sind. Denn im Schnitt beläuft sich staatliche Eingriffstiefe bei FuE im Jahr 2005 bei Kleinunternehmen auf 8,1 % und bei Mittelunternehmen auf 4,2 %. Auch zahlenmäßig sind - nach Angaben der öffentlichen Hand - immer mehr Unternehmen in den Genuss von öffentlichen Finanzierungsmitteln gelangt.\(^{58}\) Die Zahl der direkt geförderten Unternehmen hat sich seit 1990 verdreifacht, vornehmlich durch die stärkere Fokussierung auf Klein- und Mittelunternehmen, auf Gründungen und auf Unter-

nehmen in Ostdeutschland. Besonders stark wirkte sich auch die vermehrte Ausrichtung der Förde-
run auf FuE-Kooperationen (insbesondere Wirtschaft/Wissenschaft) aus. Intention ist eindeutig die
Verstärkung der Breitenwirkung der FuE-Förderung. Inwieweit sich dieser Effekt angesichts der stark
abgesenkten Mittel tatsächlich eingestellt hat, ist nicht ganz sicher; es dürfte ein hoher Anteil von
kaum merklicher Bagatellförderung dabei gewesen sein. Zudem ergibt sich aus MIP-Auswertungen
eher das gegenteilige Ergebnis: Danach sind von der öffentlichen Innovationsförderung seit Ende der
90er Jahre immer weniger Unternehmen erfasst worden - vornehmlich in Westdeutschland durch
Rückzug der Bundesländer aus der FuE-Förderung.59

Tab. 13: Finanzierung von FuE in den Unternehmen nach Wirtschaftszweigen, Größen- und
Technologieklassen 2005

- Anteile in % -

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Untemehmensgroßenklasse</th>
<th>Technologieklassen</th>
<th>Wirtschaft</th>
<th>Staat</th>
<th>andere Inländer</th>
<th>Ausland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>93,8</td>
<td>2,8</td>
<td>0,1</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemische Industrie</td>
<td>97,7</td>
<td>0,5</td>
<td>0,0</td>
<td>1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>95,7</td>
<td>2,1</td>
<td>0,1</td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik/Elektronik</td>
<td>93,2</td>
<td>2,6</td>
<td>0,0</td>
<td>4,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>91,6</td>
<td>4,3</td>
<td>0,2</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>übrige Industrie</td>
<td>96,9</td>
<td>1,4</td>
<td>0,1</td>
<td>1,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>übrige Wirtschaftszweige</td>
<td>88,0</td>
<td>7,0</td>
<td>0,5</td>
<td>4,4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschäftigtengrößenklasse</th>
<th>< 100</th>
<th>100 < 500</th>
<th>500 < 1000</th>
<th>> 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>niedrige und mittlere Technologie</td>
<td>96,9</td>
<td>1,3</td>
<td>0,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Gehobene Gebrauchstechnologie</td>
<td>97,4</td>
<td>0,7</td>
<td>0,2</td>
<td>1,7</td>
</tr>
<tr>
<td>SpitzenTechnologie</td>
<td>87,6</td>
<td>6,4</td>
<td>0,0</td>
<td>6,0</td>
</tr>
</tbody>
</table>

Quelle: SV-Wissenschaftsstatistik. - Berechnungen des NIW.

Angesichts der enormen „Hebelwirkung“ der öffentlichen FuE-Förderung - durch jeden € staatlicher
FuE-Finanzierung werden erfahrungsgemäß noch einmal 80 Cent für FuE in der Wirtschaft mobili-
siert60 - ist der drastische Rückgang der staatlichen FuE-Beteiligung in Deutschland nicht unkritisch.
Die Mittel sollten vor allem der vorwettbewerblichen Forschung zugute kommen. Hinzu kommen
dann noch unternehmensinterne Mittel für experimentelle Entwicklung und für die Umsetzung der
Forschungsergebnisse in Innovationen und Investitionen, die in ihrer Höhe stark vom Technologie-
feld, vom Stand der technologischen Entwicklung, von der Marktsituation u. ä. abhängen und daher
kaum verallgemeinerbar sind. Die nachlassende Hebelwirkung in Deutschland ist um so bedenklieher

60 Vgl. Fier, Eckert (2002).
als die staatlichen Finanzierungsbeiträge in einigen wichtigen Konkurrenzländern wieder deutlich gestiegen sind und vielfach durch steuerliche FuE-Subventionen verstärkt werden (vgl. oben).

FuE-Kosten- und Personalstruktur für Klein- und Mittelunternehmen ungünstig

Die FuE-typischen Kostenstrukturen führen zu Besonderheiten bei der Finanzierung von FuE-Vorhaben (*Tab. 14*)

Tab. 14: FuE-Personalstruktur in den Unternehmen nach Wirtschaftszweigen, Größen- und Technologieklassen 2005

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Wissenschaftler, Ingenieure</th>
<th>Techniker</th>
<th>sonstige</th>
</tr>
</thead>
<tbody>
<tr>
<td>all forschenden Unternehmen</td>
<td>54,8</td>
<td>25,0</td>
<td>20,2</td>
</tr>
<tr>
<td>Wirtschaftszweig</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>53,3</td>
<td>24,3</td>
<td>22,4</td>
</tr>
<tr>
<td>Chemische Industrie</td>
<td>32,0</td>
<td>41,6</td>
<td>26,3</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>50,6</td>
<td>26,0</td>
<td>23,3</td>
</tr>
<tr>
<td>Elektrotechnik/Elektronik</td>
<td>64,9</td>
<td>19,6</td>
<td>15,6</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>57,8</td>
<td>17,9</td>
<td>24,4</td>
</tr>
<tr>
<td>übrige Industrie</td>
<td>41,7</td>
<td>33,5</td>
<td>24,8</td>
</tr>
<tr>
<td>übrige Wirtschaftszweige</td>
<td>63,5</td>
<td>17,5</td>
<td>18,9</td>
</tr>
<tr>
<td>Beschäftigtengrößenklasse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>58,8</td>
<td>23,3</td>
<td>17,9</td>
</tr>
<tr>
<td>100 < 500</td>
<td>54,1</td>
<td>26,4</td>
<td>19,5</td>
</tr>
<tr>
<td>500 < 1000</td>
<td>48,3</td>
<td>30,2</td>
<td>21,6</td>
</tr>
<tr>
<td>> 1000</td>
<td>50,7</td>
<td>27,6</td>
<td>21,7</td>
</tr>
<tr>
<td>Technologieklassen in der Verarbeitenden Industrie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>niedrige und mittlere Technologie</td>
<td>42,6</td>
<td>33,2</td>
<td>24,2</td>
</tr>
<tr>
<td>Gehobene Gebrauchstechnologie</td>
<td>53,4</td>
<td>25,6</td>
<td>20,9</td>
</tr>
<tr>
<td>SpitzenTechnologie</td>
<td>57,3</td>
<td>24,6</td>
<td>18,0</td>
</tr>
</tbody>
</table>

Quelle: SV-Wissenschaftsstatistik. - Berechnungen des NIW.

„**Humankapital**“ ist der wichtigste Inputfaktor für den FuE-Prozess. So sind in Zeiten des Abbaus und der Stagnation der unternehmerischen FuE-Personalkapazitäten vor allem technisches und Hilfspersonal betroffen. Der Stamm der akademisch ausgebildeten Arbeitskräfte mit Schlüsselqualifikatio-

nen für den Innovationsprozess wird hingegen soweit wie möglich „gehorcht“ oder gar erweitert: Ihr Anteil am FuE-Personal beträgt inzwischen 58 %, nachdem er Ende der 70er Jahre noch bei 30 % lag. Der Bedarf an akademischem Wissen im FuE-Prozess nimmt ungebrochen zu. Dies ist vor dem Hintergrund der zunehmenden Knappheit an Akademikern mit natur- und ingenieurwissenschaftlicher Ausbildung als fundamentaler Engpassfaktor anzusehen, insbesondere für Klein- und Mittelunternehmen, für Spitzentechnikindustrien und für Dienstleistungs-FuE. Ein Problem ist vor allem, dass akademisches Personal für forschende Klein- und Mittelunternehmen zwar besonders wichtig ist, sich jedoch schlechter rekrutieren lässt, da Großunternehmen höhere Gehälter bezahlen können und oft auch bessere Aufstiegschancen bieten. FuE-Tätigkeit ist vielfach ein Sprungbrett in andere dispositive Tätigkeiten im Unternehmen. Die Versäumnisse der Bildungspolitik der 80er und 90er Jahre werden sich also als echter Hemmschuh für eine weitere Expansion der FuE-Tätigkeit erweisen. In absehbarer Zukunft wird die demografische Entwicklung die bildungspolitische Problematik verschärfen.

Externe FuE, FuE-Outsourcing und FuE-Kooperationen nehmen zu

- **Parallel zur zunehmenden Globalisierung verschoben sich die FuE-Aufträge der Unternehmen zu Gunsten des Auslandes** kräftig von 0,5 auf 4,1 % (2003) der FuE-Gesamtaufwendungen. Das sind zu einem geringeren Teil FuE-Aufträge an FuE-Einrichtungen und unabhängige Unternehmen. Im

62 Vgl. zur Situation in der für die technologische Leistungsfähigkeit relevanten Tertiärausbildung im internationalen Vergleich Egeln, Heine (Hrsg., 2007).
64 Freeman, Soete (2007).
65 Vgl. Reinhard (2002). Speziell Outsourcing von FuE bei einigen Großunternehmen im Zusammenhang mit organisatorischen Veränderungen ist eine wichtige Ursache für die kräftige Dynamisierung der externen FuE.
Wesentlich hängt der Anstieg jedoch mit zunehmenden M&A und Vernetzungen mit FuE-Einheiten im Ausland zusammen, die zu FuE-Aufträgen an Mütter und Töchter führen. Etwa zwei Drittel der Auslandsvertrags-FuE wird in verbundenen Unternehmen durchgeführt (bzw. mit diesen verrechnet).

Abb. 16: Anteil externer FuE-Aufwendungen der Wirtschaft in Deutschland 1979 bis 2005 an den FuE-Gesamtaufwendungen (in %)

Quelle: SV-Wissenschaftsstatistik. - Berechnungen und Zusammenstellungen des NIW.

- FuE-Aufträge an Hochschulen haben unter Schwankungen einen Anteil von 2,3 % der FuE-Gesamtaufwendungen erreicht. Der Anteil außeruniversitärer FuE-Einrichtungen war lange Zeit rückläufig. Seit 2001 gab es jedoch wieder einen starken Bedeutungszuwachs auf 2 %. Zu berücksichtigen ist dabei, dass die meisten Einrichtungen in Deutschland ihr FuE-Personal nicht mehr erhöht haben, sondern eher geschrumpft sind oder stagnieren. Außerdem haben sie sehr unterschiedliche, z. T. gar hoheitliche Funktionen zu erfüllen und agieren insofern nur bedingt marktnah. Zudem erbringen sie häufig vielfältige innovationsunterstützende Dienstleistungen, die nur z. T. FuE betreffen und auch in der Wahrnehmung der Unternehmen nicht als FuE gebucht werden. Insofern

wird die Bedeutung außeruniversitärer FuE-Einrichtungen für Innovationsprozesse bei Betrachtung allein der FuE-Aufträge aus der Wirtschaft deutlich unterschätzt.

Tab. 15: Bedeutung und Struktur von externer FuE der Unternehmen nach Wirtschaftszweigen, Größen- und Technologieklassen 2005

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Anteil an den FuE-Gesamt-</th>
<th>Struktur der Auftragnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aufwendungen</td>
<td>Wirtschaft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all vorforschenden Unternehmen</td>
<td>20,1</td>
<td>59,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>Beschäftigungsgrößenklasse</th>
<th>Anteil an den FuE-Gesamt-</th>
<th>Struktur der Auftragnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>aufwendungen</td>
<td>Wirtschaft</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verarbeitendes Gewerbe</td>
<td>21,0</td>
<td>60,5</td>
<td>18,1</td>
</tr>
<tr>
<td>Chemische Industrie</td>
<td>19,4</td>
<td>47,8</td>
<td>45,8</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>7,7</td>
<td>68,2</td>
<td>14,0</td>
</tr>
<tr>
<td>Elektrotechnik/Elektronik</td>
<td>21,4</td>
<td>51,2</td>
<td>3,7</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>26,2</td>
<td>68,0</td>
<td>15,7</td>
</tr>
<tr>
<td>übrige Industrie</td>
<td>9,7</td>
<td>58,3</td>
<td>19,3</td>
</tr>
<tr>
<td>übrige Wirtschaftszweige</td>
<td>11,6</td>
<td>45,1</td>
<td>26,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Beschäftigungsgrößenklasse</th>
<th>Anteil an den FuE-Gesamt- aufwendungen</th>
<th>Struktur der Auftragnehmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>11,2</td>
<td>51,0</td>
</tr>
<tr>
<td>100 < 500</td>
<td>10,2</td>
<td>57,9</td>
</tr>
<tr>
<td>500 < 1000</td>
<td>13,4</td>
<td>43,0</td>
</tr>
<tr>
<td>> 1000</td>
<td>22,0</td>
<td>60,6</td>
</tr>
</tbody>
</table>

Technologieklassen in der	Anteil an den FuE-Gesamt- aufwendungen	Struktur der Auftragnehmer					
Verarbeitenden Industrie	--	----------------------------					
niedrige und mittlere Technologie	9,2	58,6	19,1	22,4	18,2	3,5	0,7
Gehobene Gebrauchstechnologie	20,4	72,6	15,7	11,6	7,2	3,7	0,7
Spitzenstechnologie	24,0	44,4	21,2	34,4	13,6	19,9	0,9

Quelle: SV-Wissenschaftsstatistik. - Berechnungen des NIW.

Zyklische Abhängigkeit von FuE - kaum Eigendynamik in der deutschen Wirtschaft

Unternehmerische FuE in Deutschland orientiert sich zwar am Wachstumskurs der Wirtschaft, ist jedoch instabiler geworden. FuE bringt zudem keine eigene Dynamik mehr auf; es ist in der Wirtschaft zu einem unauffälligen Mitläufer der Konjunktur geworden und hat seine Rolle als treibende Kraft für eine dynamisiertere wirtschaftliche Entwicklung noch nicht wieder eingenommen. Selbst die Phase des wirtschaftlichen Aufschwungs seit 2005 ist von den Unternehmen - soweit bislang aus der deutschen

Abb. 18: Interne FuE-Aufwendungen der Wirtschaft in % der Bruttowertschöpfung der Unternehmen in Deutschland 1981-2008*

• Die Angaben für 2006 zeichnen ein positives Bild: Einerseits ist das FuE-Personal gegenüber 2005 wieder um 2,5 % aufgestockt worden, mit über 312 Tsd. ist ein neuer Rekordstand erreicht worden. Allerdings ging der Dienstleistungssektor bei der FuE-Personalausweitung leer aus. Diese fand ausschließlich in der Verarbeitenden Industrie statt, die einen Zuwachs ihrer internen FuE-Aufwendungen von 2,5 Mrd. € (+6,5 %) meldet. Bei allen anderen Sektoren zusammengenommen ist bei FuE jedoch von Stagnation auszugehen. Es sind also im Wesentlichen Großunternehmen aus der Verarbeitenden Industrie, die den FuE-Personalstamm aufgebaut und -Ausgaben erhöht haben.

Die externen FuE-Aufwendungen sind zwischen 2005 und 2006 in gewohnter Dynamik mit 30 % und damit deutlich kräftiger als die internen FuE-Aufwendungen ausgeweitet worden. Die FuE-Arbeitsteilung zwischen Wirtschaftsunternehmen sowie zwischen Wirtschaft und öffentlichen FuE-Einrichtungen im In- und Ausland hat sich also weiter intensiviert.

Per Saldo konzentriert sich die Ausweitung der internen FuE-Aufwendungen um 2,5 Mrd. € auf den Automobilbau (890 Mio €, +7½ %), der damit wieder einmal seine herausragende Stellung im

Im September 2007 hat das ZEW eine Kurzerhebung zum FuE-Verhalten der deutschen Wirtschaft vorgenommen. Es kommt zu folgenden Ergebnissen:

70 Arbeitskreis Konjunktur (2008).
Ressourcen verfügbar sind, dann ist auch im Jahr 2008 mit einer höheren Ausweitung von FuE in der Wirtschaft als ursprünglich geplant zu rechnen.

Wenn nicht jetzt: Wann dann?

Deutsche Standorte waren nach diesen Kriterien jedoch nicht immer zwingend favorisiert. Ein Grund dafür ist, dass FuE und Innovationen in Deutschland - zumindest im Vergleich zu anderen europäischen Ländern, nicht jedoch zu den USA und Japan - teurer sind. Kosten fallen in schwachen Wachstumsphasen und auf den Märkten, in denen der Ertrag unsicher ist, stärker ins Gewicht, zumal Deutschlands Ausstattungsvorteile bei (hoch) qualifiziertem Personal schwinden, FuE-Personal knapper und damit relativ teurer geworden ist. Dieser Verlust an Ausstattungsvorteilen wird sich voraussichtlich fortsetzen. Mittel-/osteuropäische Reformstaaten kommen an dieser Stelle immer stärker ins FuE-Bewusstsein der Unternehmen. Andererseits sind die noch höheren FuE-Kosten am größten FuE-Standort USA, der durchaus vergleichbare Personalknappheitsprobleme hat, ein Vorteil für Deutschland. So hat es in einigen Sektoren (Pharmazie, Medizintechnik) - u. a. aus Kostengründen - vereinzelt auch FuE-Verlagerungen aus den USA nach Deutschland gegeben.

In Deutschland ist ein starkes Wachstum von zusätzlichen hochwertigen Märkten, die als Zugpfad für internationale Unternehmen dienen können (wie es bspw. der Automarkt ist), nur ansatzweise zu erkennen. Das sind zum einen Aktivitäten auf den Märkten für Klimaschutz, der auch von politischer Seite breit flankiert wird. Weiterhin gilt die Medizintechnik als ausgezeichnetes Kompetenz- und Innovationsfeld für Deutschland. Wissensintensive Dienstleistungen und Spitzen-technologiemärkte wie

Eine Problematik scheint für Deutschland vor allem die mittelfristige Wachstumsunsicherheit im Inland sein: Je schwächer die Wachstumserwartungen ausfallen, desto eher wird auf FuE-Projekte verzichtet, werden Projekte storniert, abgebrochen oder hinausgezögert. Insbesondere Klein- und Mittelunternehmen sowie Dienstleistungsunternehmen, die häufig kleinräumig und national agieren, sind hier anfälliger als exportierende Großunternehmen, die sich am Weltmarkt orientieren können. Sie sind vor allem auf Innovationsimpulse eines dynamischen Binnenmarktes angewiesen. Hier ist positiv zu vermelden, dass 2007 zwar immer noch der Außenhandelsüberschuss als Wachstumstreiber überwog, dass jedoch zusätzlich von der Investitionsgüternachfrage starke Impulse ausgingen, die gerade forschungsintensive Industrien zu technologischen Neuerungen angestachelt haben dürften.

Sollten die Planangaben für die Jahre 2007 und 2008 tatsächlich realisiert worden sein, dann wäre FuE weiterhin nur Mitläufer in der Konjunktur. Es bleibt jedoch abzuwarten, ob die Unternehmen die (zumindest für 2007 noch unerwartet) günstigen Produktions- und Wachstumsbedingungen genutzt und in einen neuen Innovationsschub investiert haben. Denn das Umfeld für Innovationen hat sich verbessert:

- Es wurden hohe Gewinne eingefahren, so dass die Innenfinanzierungsbedingungen weniger restriktiv wirken dürften.
- Die Produktivitätssteigerungen sind weiterhin auf hohem Niveau, so dass von einer guten Wettbewerbsposition ausgegangen werden kann. Wichtige Kurzfristziele der Unternehmen sind erreicht, damit hat sich die Ausgangsbasis für FuE in ein neues Sortiment, in neue Produkte und Marktneuheiten verbessert.
- Kredite - auch für Innovationen - sind leichter als in den Vorjahren zu haben, der Bankenwettbewerb ist schärfer geworden, Klein- und Mittelunternehmen haben sich an die veränderten Konditionen bei der Kreditvergabe angepasst.
- Die Investitionen in Ausrüstungen sind sprunghaft gestiegen, vornehmlich mit dem Ziel der Kapazitätserweiterung. Änderung und Ausweitung des Sortiments wurde dabei häufiger als Grund für

74 Vgl. hierzu und zur Produktivitätsentwicklung Schröder (2007).
die Erweiterung angegeben als Erweiterungen unter Beibehaltung des bestehenden Angebots. Die Struktur der Investitions motive spricht eher für mehr Innovationen.

- Die Unternehmenssteuern sinken ab 2008 - jedenfalls soweit die Bemessungsgrundlagen nicht im Gegenzug durch die verschärften Abschreibungsregeln überproportional steigen. Dies verbessert die Erwartungen auf die Innovationsrendite nach Steuern.

Investitionen in Innovationen, d. h. vor allem in knappes Personal und kostspielige Ausrüstungen, sind zumeist das Ergebnis von mittelfristigen Erwartungen. Die Unternehmen reagieren auf mittelfristig verlässliche Ansätze aus dem politischen Raum. Um in robustere und wachstumsträchtigere Strukturen zu kommen, sind überdurchschnittlich hohe Ausweitungen der unternehmenseigenen FuE- und Innovationsaktivitäten in der Wirtschaft erforderlich. Wenn nicht jetzt, wann denn?

Hauptsächlich stellen sich die Unternehmen die Frage: Wie stabil und ergiebig ist der Aufschwung? Denn es gibt eine Reihe von Risiken, die in den Innovationskalkülen der Unternehmen eingehen und jederzeit die Signale wieder verstellen können: Nahrungsmittel- und Ölpreise und damit wieder aufflackernde Inflationsgefahr, Aufwertungsdruck und Herausforderungen der Aufholländer, Immobilienkrise in den USA und deren Rückwirkungen auf die Weltwirtschaft, öffentliche Haushalte und Rahmenbedingungen der Ressortpolitik, Naturkatastrophen, Krieg und Terror. Hinzu kommt kurzfristig immer die Verlockung, die knappen Ressourcen in die immer noch steigenden Produktionsanforderungen zu stecken und nicht in Innovationen.

Bekannt ist die als Bremse wirkende demographische Entwicklung; sie wird das Wachstumspotenzial in Deutschland bei normaler Produktivitätsentwicklung auf maximal 1½ % pro Jahr begrenzen und nach und nach weiter herunterschrauben. Selbst bei expansiver Bildungspolitik ist zudem auf Grund der bildungspolitischen Versäumnisse der letzten 25 Jahre und langfristig aus demographischen

75 Verbandsumfrage des IW Köln.

Literaturverzeichnis

BMBF (2006), High-tech-Strategie für Deutschland, Berlin.

Economist Intelligence Unit (2004), Scattering the seeds of invention, The globalisation of research and development, London, New York, Hong Kong.

IMD (versch. Jgge.), The World Competitiveness Yearbook, Lausanne.

Klodt, H., R. Maurer, A. Schimmelpfennig (1997), Tertiaryisierung der deutschen Wirtschaft, Institut für Weltwirtschaft, Kiel.

NSF (versch. Jgge.), Science And Engineering Indicators, Washington D. C.

OECD (versch. Jgge.), Main Science and Technology Indicators, Paris.

