Bildung und Qualifikation als Grundlage der technologischen Leistungsfähigkeit Deutschlands

Bericht des Konsortiums „Bildungsindikatoren und technologische Leistungsfähigkeit“

Michael Leszczensky, Alexander Cordes, Christian Kerst, Tanja Meister

Studien zum deutschen Innovationssystem

Nr. 1-2012

HIS-Institut für Hochschulforschung (HIS-HF), Goseriede 9, 30159 Hannover
Niedersächsisches Institut für Wirtschaftsforschung (NIW), Königstraße 53, 30175 Hannover

Februar 2012

Studien zum deutschen Innovationssystem
Nr. 1-2012
ISSN 1613-4338

Herausgeber:
Expertenkommission Forschung und Innovation (EFI)
Geschäftsstelle:
c/o Stifterverband für die Deutsche Wissenschaft
Pariser Platz 6
10117 Berlin
www.e-fi.de

Alle Rechte, insbesondere das Recht der Vervielfältigung und Verbreitung sowie die Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (durch Fotokopie, Mikrofilm oder ein anderes Verfahren) ohne schriftliche Genehmigung der EFI oder der Institute reproduziert oder unter Verwendung elektronischer Systeme gespeichert, verarbeitet, vervielfältigt oder verbreitet werden.

Projektteam:
HIS-Institut für Hochschulforschung (HIS-HF): Dr. Michael Leszczensky, Dr. Christian Kerst, Tanja Meister, unter Mitarbeit von Dr. Christoph Heine
Niedersächsisches Institut für Wirtschaftsforschung (NIW): Dr. Alexander Cordes, unter Mitarbeit von Dr. Birgit Gehrke

Kontakt und weitere Information:
Dr. Michael Leszczensky
HIS Hochschul-Informations-System GmbH
HIS-Institut für Hochschulforschung (HIS-HF)
Goseriede 9, D-30159 Hannover
Tel: +49 (0)511 1220-258
Fax: +49 (0)511 1220-431
E-Mail: leszczensky@his.de
Bildung und Qualifikation als Grundlage der technologischen Leistungsfähigkeit Deutschlands

Inhaltsübersicht

0 Executive Summary........................................................................................................................................1
1 Einleitung.....................................................................................................................................................4
2 Qualifikationsstrukturen und Wissensintensivierung in Deutschland und Europa ........................................6
  2.1 Einleitung ...............................................................................................................................................6
  2.2 Qualifikationsstrukturen der Bevölkerung und der Erwerbstätigen in wissensintensiven Wirtschaftszweigen in Deutschland ........................................................................................................7
  2.3 Erwerbstätige in wissensintensiven Wirtschaftszweigen im internationalen Vergleich ....................12
    2.3.1 Hochqualifizierte Erwerbstätige in der Gesamtwirtschaft .........................................................13
    2.3.2 Sektoraler Humankapitaleinsatz ..................................................................................................17
  2.4 Voraussichtliche Entwicklung der Nachfrage nach Hochqualifizierten .....................................22
    2.4.1 Kernergebnisse vorliegender Projektionen ..................................................................................22
    2.4.2 Ersatzbedarf in akademischen bzw. naturwissenschaftlich-technischen Berufen ..................25
3 Teilnahme an hochschulischer Bildung ....................................................................................................27
  3.1 Aktuelle und strukturelle Entwicklungen im Hochschulbereich ......................................................27
    3.1.1 Die erste Programmphase des Hochschulpakts 2007-2010 ....................................................27
    3.1.2 Die zweite Programmphase des Hochschulpakts 2011-2015 ..................................................28
  3.2 Entwicklung des Studierpotenzials aus dem allgemeinbildenden und beruflichen Schulsystem .................................................................31
  3.3 Übergang in die Hochschule und Entwicklung der Studienachfrage .............................................36
    3.3.1 Übergang von der Schule zur Hochschule .................................................................................36
    3.3.2 Berufliche (Weiter-)Bildung und Hochschulstudium ................................................................38
    3.3.3 Entwicklung der Zahl der Studienanfänger(innen) ..................................................................39
  3.4 Studienanfänger(innen) in den MINT-Studiengängen ...................................................................43
  3.5 Studienverlauf ....................................................................................................................................46
    3.5.1 Auslandsaufenthalte während des Studiums ..........................................................................46
    3.5.2 Praktika und fachnahe Erwerbstätigkeit während des Studiums ............................................48
  3.6 Hochschulabsolvent(inn)en ...............................................................................................................49
    3.6.1 Absolventenzahl .........................................................................................................................49
### Inhaltsverzeichnis

3.6.2 Absolventenquote und Beteiligung an der Hochschulbildung im internationalen Vergleich ..... 50

3.7 Ausbildung von MINT-Fachkräften ................................................................. 53

3.7.1 Fächerstruktur .................................................................................................. 53

3.7.2 Promotionen .................................................................................................... 56

3.8 Bildungsinländer und Bildungsausländer an Hochschulen .................................. 57

Literaturverzeichnis .................................................................................................. 62
Abbildungsverzeichnis

Abb. 2.1 Qualifikationsstruktur der Erwerbstätigen, Erwerbslosen und Nicht-Erwerbspersonen 2008 bis 2010 ................................................................. 8
Abb. 2.2 Bildungsabschlüsse der Erwerbstätigen nach Sektoren................................. 8
Abb. 2.3 Qualifikationsmerkmale in wissensintensiven und nicht wissensintensiven Wirtschaftszweigen in Deutschland 2008 bis 2010 ............................ 11
Abb. 2.4 Akademikeranteil in der Gesamtwirtschaft 2009 und 2010 im europäischen Vergleich ................................................................. 14
Abb. 2.5 Übersicht deutscher Bildungsprogramme in der Stufe ISCED 4 ..................... 15
Abb. 2.6 Bedeutung der Stufe ISCED 4 unter den Erwerbstätigen in Europa ............... 15
Abb. 2.7 Anteile nicht in Ausbildung befindlicher Erwerbstätiger mit postsekundären Bildungsabschlüssen in Europa 2010 ............................................ 16
Abb. 2.8 Akademikeranteil in wissensintensiven Sektoren der Gewerblichen Wirtschaft 2008 und 2010 im europäischen Vergleich .................................... 18
Abb. 2.9 Einsatz von akademischen Berufsgruppen in Europa, USA und Japan 2010 .... 20
Abb. 2.10 Einsatz von Naturwissenschaftlern und Ingenieuren in Europa, USA und Japan 2010 ................................................................. 21
Abb. 2.11 In FuE tätige Wissenschaftler und Ingenieure in ausgewählten Ländern 1995, 2000, 2005 und 2010 ................................................................. 22
Abb. 2.12 Entwicklung von Angebot und Nachfrage bei Personen mit Hochschulabschluss .... 23
Abb. 2.13 Entwicklung von Angebot und Nachfrage in ausgewählten Tätigkeiten .......... 24
Abb. 2.14 Akademiker im Alter von 55 bis 64 Jahren absolut und als Anteil an allen Beschäftigten ................................................................. 26
Abb. 2.15 Naturwissenschaftler und Ingenieure im Alter von 55 bis 64 Jahren absolut und als Anteil an allen Beschäftigten ................................................................. 26
Abb. 3.1 Umsetzungsstand der ersten Säule des Hochschulpakts für die Jahre 2007 - 2010 ...... 29
Abb. 3.2 Studienberechtigte in Deutschland 1992 – 2025 in Tsd., ab 2011 Projektion .... 31
Abb. 3.3 Studienberechtigtenquoten in Deutschland: Anteil der Schulabgänger(innen) mit Hochschulreife an der altersgleichen Bevölkerung 1992 bis 2025 insgesamt und nach Geschlecht in Prozent, ab 2011 Projektion .... 33
Abb. 3.4 Studienberechtigte aus allgemeinbildenden Schulen mit Besuch ausgewählter Leistungskurse 1980 bis 2010 in Prozent ........................................... 35
Abb. 3.5 Abschlussquoten im Sekundarbereich II und im postsekundaren nicht-tertiären Bereich in ausgewählten OECD-Ländern 1998-2009 in Prozent .............. 36
Abb. 3.6 Studierquoten oder Übergangsquoten in die Hochschulen 1980 bis 2010 in Prozent .. 37
Bildung, Qualifikation und technologische Leistungsfähigkeit

Abb. 3.7 Deutsche Studienanfänger(innen) insgesamt und an Universitäten und Fachhochschulen im Wintersemester 2000, 2005, 2009 und 2010 nach Wegen des Erwerbs der Studienberechtigung in Prozent .............................................. 39

Abb. 3.8 Studienanfänger(innen) in Deutschland im 1. Hochschulsemester der Studienjahre 1992 bis 2025 in abs. Zahlen, ab 2012 Projektion ................................................... 40

Abb. 3.9 Studienanfängerquoten in Deutschland 1993 – 2011 insgesamt in Prozent ........... 41

Abb. 3.10 Studienanfängerquote: Anteil der Studienanfänger(innen) an der alterotypischen Bevölkerung in ausgewählten OECD-Ländern 1998 – 2009 in Prozent ...................... 43

Abb. 3.11 Fächerstrukturquoten nach Fächergruppen und ausgewählten Studienbereichen der MINT-Fächer 1992 – 2010 in Prozent ................................................... 44

Abb. 3.12 Studienanfänger(innen) im Tertiärbereich A in ausgewählten OECD-Ländern 2007 bis 2009 nach Fächergruppen in Prozent ................................................... 45

Abb. 3.13 Auslandsaktivitäten nach Abschlussart an Universitäten und Fachhochschulen........ 47

Abb. 3.14 Hochschulabsolvent(inn)en 1993 bis 2010 ................................................... 50

Abb. 3.15 Absolventenquote 1997 bis 2010 .............................................................. 51

Abb. 3.16 Anteil von Personen mit einem Hochschulabschluss nach Altersgruppen 1997, 2000, 2005 und 2009 im internationalen Vergleich ................................................... 52

Abb. 3.17 Frauenanteil und Fächerstrukturquoten in ausgewählten Fächergruppen 1993 bis 2010 in Prozent ................................................... 54

Abb. 3.18 Erstabsolvent(inn)en, Fächerstrukturquoten und Frauenanteile zwischen 1993 und 2010 .............................................................. 55

Abb. 3.19 Zahl der Promovierten und Promotionsintensität 1993 bis 2009 in abs. und in Prozent .............................................................. 57

Abb. 3.20 Ausländische Studierende an deutschen Hochschulen in absoluten Zahlen .......... 58

Abb. 3.21.1 Bildungsausländische Studienanfänger(innen) im Erststudium und Erstabsolvent(inn)en 2000, 2007 und 2010 in ausgewählten Fächergruppen und Studienbereichen .............................................................. 60

Abb. 3.21.2 Promotionen und Masterabschlüsse von Bildungsausländern 2006 bis 2010 in ausgewählten Fächergruppen und Studienbereichen .............................................................. 60

Abb. 3.22 Abschlussquoten im Tertiärbereich A, Promoviertenquoten und Absolventinnenanteile in den Ingenieur- und Naturwissenschaften im internationalen Vergleich in Prozent .............................................................. 61
Executive Summary


Darüber hinaus ist in Deutschland neben dem akademischen Bereich das mittlere Qualifikationssegment der beruflichen Bildung überdurchschnittlich stark ausgeprägt. Die berufliche Bildung stellt eine nicht zu unterschätzende Basis für die Generierung höherer Qualifikationen dar. Dennoch befindet sich Deutschland auch unter Einbeziehung der höheren beruflichen Bildung (ISCED 4+5B) im europäischen Vergleich lediglich im Mittelfeld.

Vor dem Hintergrund der – stark medial vermittelten – Diskussion um sich möglicherweise abzeichnende Fachkräfteengpässe wird versucht, die voraussichtliche Entwicklung des Arbeitsmarktes (Angebot und Nachfrage) für Hochqualifizierte abzuschätzen. Sollten sich demnach die seit einigen Jahren zu beobachtenden Trends höherer Bildungs- und Erwerbsbeteiligung fortsetzen, kann das Angebot an Hochqualifizierten trotz abnehmenden Erwerbspersonenpotenzials weiter ansteigen und damit den zunehmenden Bedarf befriedigen oder sogar übersteigen.

Relativ sichere Aussagen über die Entwicklung der Nachfrage nach hochqualifizierten Fachkräften kann man hinsichtlich des ruhestandsbedingten Ersatzbedarfs treffen. Im internationalen Vergleich wird offenkundig, dass der Ersatzbedarf an Erwerbstätigen in akademischen und vor allem in naturwissenschaftlich-technischen Berufen in den kommenden Jahren eine besonders große Herausforderung für Deutschland darstellt. Hier sind europaweit die höchsten Anteile an 55- bis unter 65-jährigen Erwerbstätigen zu beobachten, die in den kommenden Jahren altersbedingt aus dem Berufsleben ausscheiden werden. Die Herausforderung für die Unternehmen wie für das Bildungssystem besteht daher auch darin, den Verlust vor allem auch der überfachlichen Kompetenzen, die diese Beschäftigten im Laufe ihres Erwerbslebens erworben haben, zu minimieren.


1 KMK 2012.
Bildung, Qualifikation und technologische Leistungsfähigkeit


Für die technologische Leistungs- und Innovationsfähigkeit ist die akademische Ausbildung von Fachkräften in den MINT-Studienfächern von besonderer Bedeutung. Ein relativ konstanter Anteil der Studienanfänger(innen) (ca. 17 %) entscheidet sich in den letzten Jahren für ein Studienfach der Fächergruppe Mathematik, Naturwissenschaften. Zulegen konnten die Ingenieurwissenschaften. Etwas mehr als ein Fünftel (21 %) der Studienanfänger(innen) nimmt gegenwärtig ein Studium in einem ingenieurwissenschaftlichen Fach auf.


Sowohl die Ingenieur- als auch die Naturwissenschaften weisen eine überdurchschnittliche Promotionsintensität auf. In einigen Fächern wie der Chemie oder der Physik kann die Promotion fast als Regelabschluss gelten. Hier wird in hohem Maße in die Ausbildung des wissenschaftlichen Nachwuchses investiert, der später nur zu Teilen im Hochschulsystem verbleibt und daneben auch für FuE-Aktivitäten sowie Innovationsprozesse in der Wirtschaft unabdingbar ist.

Für die Ausbildung von akademisch qualifizierten Fachkräften sind darüber hinaus Studierende, die aus dem Ausland zum Studium nach Deutschland kommen, eine wichtige Gruppe. Ausländische Studierende stellen gegenwärtig 11,5 % der Studierenden in Deutschland. In den MINT-Fächern liegt der Anteil der Bildungsausländer(innen) – mit Ausnahme der Elektrotechnik – etwas unter dem nationalen Durchschnitt. Ihr Anteil an den Erstabsolventen ist aber in den Ingenieurwissenschaften überdurchschnittlich hoch, während er in den Naturwissenschaften nur unterdurchschnittlich ist und weiter
singt. Interessant mit Blick auf das Fachkräftepotenzial ist der hohe Anteil ausländischer Absolvent(inn)en bei den Masterabschlüssen und Promotionen. In den Ingenieur- und Naturwissenschaften hat jede(r) fünfte Promovierte eine ausländische Studienberechtigung. Hier liegt die Chance zu einem „brain gain“, wenn es gelingt, einen Teil dieser Fachkräfte in Deutschland zu halten.
1 Einleitung

In allen fortgeschrittenen Volkswirtschaften ist ein Trend zur Wissenswirtschaft zu beobachten, ein Trend, der ökonomisch ohne Alternative ist und der zunehmenden Bedarf an (hoch)qualifiziertem Humankapital schafft. Diese Entwicklung stellt das Bildungssystem, das das Humankapital bzw. die notwendigen Kompetenzen i. W. generieren muss, vor enorme Herausforderungen. Je höher die Anforderungen an die Qualifikation der Erwerbstätigen, umso mehr muss sich vor allem das Hochschulsystem in der Pflicht sehen, ein ausreichendes Angebot an hochqualifizierten und gut ausgebildeten jungen Menschen bereitzustellen. Wenn Engpässe zu erwarten sind, muss durch Bildungsmobilisierung frühzeitig entgegengewirkt werden.

Gut ausgebildetes und hochqualifiziertes Personal ist vor allem eine der elementaren Voraussetzungen für Forschung und Entwicklung, für Innovationen und deren Umsetzung bzw. für die Übernahme von wissenschaftlichen Erkenntnissen in der Wirtschaft. Insbesondere akademische Qualifikationen werden in allen Tätigkeitsbereichen immer stärker nachgefragt, wobei für technische Innovationsprozesse vor allem und zunehmend Naturwissenschaftler(innen) und Ingenieur(inn)en benötigt werden.

Der steigende Bedarf an akademischem Wissen in den Segmenten der Gewerblichen Wirtschaft, die sich auf internationalen Märkten und im Innovationswettbewerb bewähren, ist in Deutschland auch während der jüngsten weltwirtschaftlichen Rezession feststellbar gewesen. Die Zahl der Hochschulabsolvent(inn)en in wissensintensiven Wirtschaftszweigen sowie der Natur- und Ingenieurwissenschaftler(innen) hat in diesem Zeitraum noch einmal deutlich zugenommen.


Dies gilt ganz besonders in Bezug auf den Anteil jüngerer Menschen mit Hochschulabschluss an der altersgleichen Bevölkerung: Während sich dieser in Deutschland seit 1995 verdoppelt hat (von 14 % auf 29 % in 2010), wuchs er im Durchschnitt der Industrieländer von 20 % auf 39 % (s. u.). Der Abstand zwischen Deutschland und anderen maßgeblichen Industrieländern hat sich insofern nicht verringernt. Für die zukünftige Entwicklung kommt in dieser Hinsicht erschwerend hinzu, dass das Arbeitskräfteangebot in Deutschland spätestens ab Mitte des kommenden Jahrzehnts demografiebedingt sinken und sich die Altersstruktur der Erwerbsbevölkerung deutlich zulasten jüngerer Jahrgänge verschieben wird. Die Zahlen von Absolvent(inn)en aus dem Bildungssystem werden deutlich zurückgehen, sodass immer weniger Nachwuchs für altersbedingt ausscheidende Kräfte zur Verfügung steht. Aufgrund der längeren Bildungszeiten und der steigenden Beteiligung an der Hochschulbildung wird die Zahl der jährlichen Hochschulabsolvent(inn)en allerdings erst zu Beginn der 2020er Jahre wieder unter das Niveau von 2008 sinken. Dennoch ist es langfristig fraglich, ob es dem Bildungs- und Ausbildungssystem in Deutschland gelingen wird, die zukünftig vermehrt erforderlichen Qualifikationen in hinreichendem Umfang zur Verfügung zu stellen.


---

3 Vgl. Leszczensky/Gehrke/Helmrich 2011, Kap. 2.3.2.

Ergänzend zum etwas „schlankerem“ Indikatorenbericht zu Bildung, Qualifikation und technologischer Leistungsfähigkeit werden 2012 zwei Schwerpunktthemen bearbeitet und gesondert veröffentlicht:

- Übergang vom Bachelor- zum Masterstudium
- Projektionen von Arbeitsangebot und –nachfrage nach Qualifikation und Beruf im Vergleich.
Qualifikationsstrukturen und Wissensintensivierung in Deutschland und Europa

2.1 Einleitung

Ziel dieses Kapitels ist die Darstellung der Qualifikationsstrukturen und der Entwicklung der Wissensintensivierung in Deutschland sowie im europäischen Vergleich. Der Strukturwandel zur Wissens- und Dienstleistungswirtschaft hat immense Konsequenzen für die Anforderungen an die Qualifikationen der Erwerbstätigen. Einerseits verschiebt sich die Nachfrage nach hochwertigen Ausbildungen allein dadurch, dass sich wissensintensive Sektoren kontinuierlich ein höheres Gewicht an der gesamtwirtschaftlichen Produktion verschaffen. Andererseits ist in diesen Sektoren Innovation meist einer der konstituierenden Wettbewerbsparameter, der Innovationsdruck damit erfahrungsgemäß wesentlich höher als in den übrigen Bereichen der Wirtschaft. Von daher ergibt sich permanent ein zusätzlicher Nachfrageschub nach (hoch)qualifizierten Erwerbstätigen, meist Akademiker(inne)n, die im Innovationswettbewerb eine Schlüsselrolle spielen. Dies betrifft zentral zum einen wissenschaftlich ausgebildetes Personal für Forschung und Entwicklung (FuE), hier sind vor allem Naturwissenschaftler(innen) und Ingenieur(inn)e(n) gefordert; zum anderen aber auch Personal für hochwertige Dienstleistungsfunktionen (wie Produkt- und Programmplaunung, Entwicklung, Konstruktion, Marketing, Finanzierung usw.), die wichtig sind, um Innovationen in Gang zu bringen und umzusetzen.

Das Humankapital bildet insofern die Basis für den Erfolg und die weitere Entwicklung von Wirtschaft und Gesellschaft. Es stellt die wichtigste Ressource und den wichtigsten Aktivposten für die wissenschaftliche und technologische Wettbewerbsfähigkeit des Standortes Deutschland dar. Humankapital bedeutet dabei all jenes Wissen, alle Fertigkeiten und Kompetenzen, welche Menschen in sich tragen. Leider sind derzeit die Möglichkeiten bei der Messung und Quantifizierung dieser verschiedenen Dimensionen des Humankapitals auf der Ebene von Volkswirtschaften beschränkt.

Investitionen in Wissen und Bildung wirken nicht in kurzer Frist, sondern haben lange Vorlaufzeiten. Entscheidungen der Vergangenheit wirken heute noch nach, Veränderungen und Reformen im Bildungssystem heute machen sich direkt erst wesentlich später auf den Arbeitsmärkten und in der internationalen Wettbewerbsposition bemerkbar. Insofern ist es wichtig, die Determinanten der Nachfrage nach Qualifikationen frühzeitig zu erkennen und zu projizieren.


Ausgangsbasis ist dabei die Analyse des Status quo. Abschnitt 2.2 geht insofern auf die Qualifikationsstrukturen in Deutschland hinsichtlich des Erwerbsstatus bzw. der sektoralen Erwerbstätigkeit ein. Im Anschluss daran folgt in Abschnitt 2.3 eine international vergleichende Analyse, um die deutschen Qualifikationsstrukturen und -entwicklungen besser bewerten zu können. Der Fokus dieses Abschnitts liegt auf der vergleichenden Betrachtung mit anderen europäischen Staaten bzw. Regionen, ergänzt um zusätzliche Informationen für die USA und Japan. Abschnitt 2.4 betrachtet die zukünftige Entwicklung des Angebots und des Bedarfs an Erwerbstätigen verschiedener Qualifikationsstufen auf Basis verschiedener vorliegender Projektionen und geht anschließend auf den Ersatzbedarf aufgrund von Verrentungen von Akademiker(inne)n – ebenfalls im internationalen Vergleich – ein.
2.2 Qualifikationsstrukturen der Bevölkerung und der Erwerbstätigen in wissensintensiven Wirtschaftszweigen in Deutschland


Nichterwerbspersonen sind häufiger noch als Erwerbslose gering qualifiziert (Abb. 2.1): 42,4 % der Nichterwerbspersonen verfügen über keinen Abschluss, bei den Erwerbslosen betrifft dies etwa ein Drittel (32,0 %). Dies weist darauf hin, dass viele der Nichterwerbspersonen mangels einer attraktiven Erwerbsperspektive dem Arbeitsmarkt dauerhaft nicht zur Verfügung stehen, denn eine ausreichende Qualifikation ist noch immer eine der wichtigsten Determinanten der Erwerbstätigkeit. So haben nur 13,6 % der Erwerbstätigen keinen beruflichen Abschluss, wobei sich auch dieser Anteil zuletzt weiter verringert hat.


Demgegenüber sind die Anteile von Erwerbstätigen mit einem Abschluss als Meister(in), Techniker(in) oder vergleichbarer Zusatzqualifikation weiter gestiegen. Im Jahr 2010 wiesen 9,7 % der Erwerbstätigen einen entsprechenden Abschluss auf, 2008 waren es noch 8,6 %. Ihr Anteil an den Erwerbslosen beträgt mittlerweile nur noch 3,5 %, bei den Nichterwerbspersonen ist es bei einem relativ konstanten Niveau von 3,8 % geblieben.

Akademiker(innen) stellten 2010 16,7 % der Erwerbstätigen, ihr Anteil hatte insbesondere während der konjunkturellen Eintrübung zwischen 2008 und 2009 – zusammen mit den Meister(inne)n und Techniker(inne)n – zulasten derjenigen mit einer beruflichen Ausbildung zugenommen. Bei den Erwerbslosen (7,4 %) war der Trend zuletzt uneinheitlich; bei den Nichterwerbspersonen (6,4 % in 2010) ist sogar eine leichte anteilsmäßig Zunahme zu beobachten – bei einem absoluten Rückgang um rund 30.000 Personen.


5 Darunter insbesondere vergleichbare Fachschulabschlüsse, Abschluss einer Verwaltungsfachhochschule sowie Abschluss einer 2- oder 3-jährigen Schule des Gesundheitswesens.
Die Erwerbsbeteiligung wird in wesentlichem Maße von der Nachfrage in der Gewerblichen Wirtschaft geprägt. Dabei bestehen große Unterschiede zwischen den Sektoren, welche Qualifikationen jeweils nachgefragt werden (Abb. 2.2). So ist die Erwerbstätigkeit von gering Qualifizierten in den nicht wissensintensiven Wirtschaftszweigen des Produzierenden Gewerbes (17,6 %) bzw. des Dienstleistungsbereichs (18,9 %) überdurchschnittlich ausgeprägt. Aber auch Erwerbstätige mit einer beruflichen Ausbildung werden, obwohl immer noch mehr als die Hälfte der Erwerbstätigen repräsentierend, in den wissensintensiven Wirtschaftszweigen weniger häufig beschäftigt als in der nicht wissensintensiven gewerblichen Wirtschaft. Meister(innen), Techniker(innen) und vergleichbare Abschlüsse hingegen werden vor allem im Produzierenden Gewerbe sowie im Bereich der wissensintensiven Dienstleistungen nachgefragt (zwischen rund 10 % und 12 %). In wissensintensiven Wirtschaftszweigen ist die Beschäftigung von Akademikern ein schon definitionsgemäß prägendes Merkmal, das die Unterschiede zwischen diesen und übrigen Sektoren besonders hervortreten lässt: Innerhalb des Produzierenden Gewerbes weisen 19,1 % der Erwerbstätigen in den wissensintensiven Branchen einen Hochschulabschluss auf, in den nicht wissensintensiven Wirtschaftszweigen hingegen nur 6,5 %; im Dienstleistungsbereich betragen die Akademikeranteile sogar 30,9 % gegenüber 7,2 % in nicht wissensintensiven Dienstleistungsbereichen.

Die **Akademikerintensität** in einem Wirtschaftszweig (der Anteil von Hochschulabsolvent(inn)en) misst vor allem das theoretische und methodische Wissen der studierten Beschäftigten als wesentliche Basis für eine strategisch fundierte Unternehmenssteuerung und -aktivität – unabhängig von der konkreten Tätigkeit (z. B. Marketing, Controlling, etc.). Unter funktionalen Gesichtspunkten und im Hinblick auf die technologische Leistungsfähigkeit ist die Ausübung natur- und ingenieurwissenschaftlicher Tätigkeiten („Wissenschaftlerintensität“) von Interesse. Der Beschäftigtenanteil in den entsprechenden Berufen ist daher ein zentraler Indikator für die Intensität, mit der technologische Innovationen vorangetrieben werden. Obwohl eine gewisse Schnittmenge zwischen „Wissenschaftler(inne)n“ und „Akademiker(inne)n“ besteht (als Naturwissenschaftler(innen) und Ingenieur(innen) tätige Personen weisen größtenteils auch einen Hochschulabschluss auf), messen die beiden Indikatoren also unterschiedliche Sachverhalte.


Die Wissenschaftlerintensität, d. h. der Anteil von Personen in natur- und ingenieurwissenschaftlichen Berufen an allen Beschäftigten im jeweiligen Wirtschaftszweig, ist zwischen 2008 und 2010 – bei leichten Aufwärtstendenzen – relativ konstant geblieben (Abb. 2.3). In der Gewerblichen Wirtschaft insgesamt beträgt die Wissenschaftlerintensität im Jahr 2010 3,3 %; gegenüber 2008 (3,2 %) hat sich damit keine wesentliche Veränderung ergeben. Die absolute Beschäftigtenzahl in diesen Berufen ist mit einer jährlichen Rate von 1,1 % gestiegen. Im Produzierenden Gewerbe liegt der Anteil von Naturwissenschaftler(inne)n und Ingenieur(inn)en mit aktuellen 5,1 % seit jeher höher als im Dienstleistungssektor mit 2,2 % (2010), der allerdings ein etwas stärkeres Wachstum der absolutes Zahl dieser spezifischen Qualifikationen verzeichnet (jahresdurchschnittlich 2,1 % gegenüber 0,4 % im Produzierenden Gewerbe). In den wissensintensiven Wirtschaftszweigen sind fünfmal so viele Wissenschaftler(innen) tätig wie in den nicht wissensintensiven Branchen, d. h. 10,1 % in den entsprechenden Branchen des Produzierenden Gewerbes sowie 4,5 % in wissensintensiven Dienstleistungen. Einzig in den wissensintensiven Wirtschaftszweigen wächst – im Aggregat – die Zahl der beschäftigten Wissenschaftler(innen) (jährlich um 1,5 %), während die Entwicklung in den nicht wissensintensiven Wirtschaftszweigen stagniert (0,0 %).


---

wissensintensiven Verarbeitenden Gewerbes nimmt der Anteil von Wissenschaftler(inne)n dagegen weiter zu:

- Im Bereich Elektrotechnik/Elektronik/Optik ist ein Anstieg von 12,5 % auf nunmehr 13,1 % zu verzeichnen.
- Im Fahrzeugbau wird fast jede(r) Zehnte mittlerweile den Naturwissenschaftler(inne)n oder Ingenieur(innen) zugerechnet (9,9 % gegenüber 9,1 % im Jahr 2008).
- Nur geringfügig niedriger ist die Wissenschaftlerrentität mit 8,7 % im Maschinenbau (2008: 8,2 %).
- Der Schwerpunkt Chemie/Pharma weist mit 7,9 % den geringsten Anteil innerhalb der wissensintensiven Industrien auf, gegenüber 2008 (7,6 %) hat sich allerdings auch hier eine Steigerung ergeben.

In den nicht wissensintensiven Wirtschaftszweigen des Verarbeitenden Gewerbes sowie des übrigen Produzierenden Gewerbes beträgt die Wissenschaftlerintensität nahezu unverändert 2,3 %. Im nicht wissensintensiven übrigen Produzierenden Gewerbe wurde in diesen Berufen sogar Beschäftigung abgebaut.

Die Dienstleistungsbranchen zeigen im Vergleich dazu so gut wie keine Veränderungen in der Intensität, bei gleichzeitig teilweise hohen Wachstumsraten von bis zu 7,3 %. Innerhalb der wissensintensiven Dienstleistungen (insgesamt 4,5 %) übt in der Technischen Beratung und Forschung fast jede(r) dritte Beschäftigte eine Tätigkeit als Naturwissenschaftler(in)/Ingenieur(in) aus (31,0 %). Darin spiegelt sich auch die zentrale Rolle dieses Sektors im gesamtwirtschaftlichen Innovationsprozess wider. Gegenüber 2008 bedeutet dies einen Anstieg um fast einen Prozentpunkt (von 30,1 %) und ein absolutes Wachstum von 2,7 % jährlich. Die Kommunikationsdienstleistungen weisen noch eine Wissenschaftlerintensität von 4,3 % auf. Alle übrigen Schwerpunkte beschäftigten deutlich weniger Wissenschaftler(innen).

Insgesamt wurde die Wissenschaftlerintensität unbeeinflusst von der schwankenden Basis (Gesamtbeschäftigung) kontinuierlich gesteigert, vor allem im Verarbeitenden Gewerbe und dort in den wissensintensiven Industrien. Im Dienstleistungssektor ist die Technische Beratung und Forschung maßgebend – gerade angesichts ihrer gesamtwirtschaftlichen Schlüsselfunktion im Bereich natur- und ingenieurwissenschaftlicher Tätigkeiten, die sich auch in entsprechenden Beschäftigtenanteilen ausdrückt.

Die Akademikerintensität liegt aufgrund der größeren fachlichen Breite naturgemäß höher als die Wissenschaftlerintensität. Allerdings fallen auch die Wachstumsraten bei der Akademikerbeschäftigung eher höher aus als bei den Wissenschaftler(inne)n. Dies lässt auf eine hohe Wissensintensivierung auch in anderen funktionalen Tätigkeitsbereichen schließen.

In der Gewerblichen Wirtschaft hat sich die Akademikerintensität seit 2008 um 0,4 Prozentpunkte auf 9,2 % im Jahr 2010 erhöht. Insbesondere in wissensintensiven Wirtschaftszweigen wurde der Einsatz von Beschäftigten mit einem Hochschulabschluss auf anteilmäßig 17,8 % ausgebaut (2008: 16,9 %). In den nicht wissensintensiven Wirtschaftszweigen beträgt der Anteil im Vergleich dazu lediglich 4,0 % (2008: 3,8 %). Auch das Wachstum fiel in den wissensintensiven Branchen mit jährlich 2,7 % höher aus (gegenüber 1,7 % in den übrigen Wirtschaftszweigen).

In den wissensintensiven Industrien des Verarbeitenden Gewerbes wurde der Akademikeranteil fast durchgängig um ca. einen Prozentpunkt gesteigert, insgesamt von 15,7 % auf 16,5 %, während in den nicht wissensintensiven Industrien das Niveau von 5,0 % auf 5,4 % erhöht wurde.

- Die IuK-Technik, in der fast ein Viertel aller Beschäftigten über einen Hochschulabschluss verfügt (24,6 %), weist als einziger produktionswirtschaftlicher Schwerpunkt eine sinkende Akademikerintensität auf, parallel zur Sonderentwicklung in der Branche bei den Naturwissenschaftler(inne)n und Ingenieur(innen).
### Abb. 2.3: Qualifikationsmerkmale in wissensintensiven und nicht wissensintensiven Wirtschaftszweigen in Deutschland 2008 bis 2010

<table>
<thead>
<tr>
<th>Sektoren/Wirtschaftsziege/Schwerpunkt</th>
<th>Wissenschaftler(innen)</th>
<th>Akademiker(innen)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Produzierendes Gewerbe</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>4,9</td>
<td>5,0</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>9,7</td>
<td>10,0</td>
</tr>
<tr>
<td><strong>Verarbeitendes Gewerbe</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>5,5</td>
<td>5,7</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>9,8</td>
<td>10,1</td>
</tr>
<tr>
<td>Darunter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt Chemie/Pharma</td>
<td>7,6</td>
<td>7,8</td>
</tr>
<tr>
<td>Schwerpunkt Informations- u. Kommunikationstechnik</td>
<td>16,8</td>
<td>16,7</td>
</tr>
<tr>
<td>Schwerpunkt Elektrotechnik/Elektronik/Optik</td>
<td>12,5</td>
<td>12,9</td>
</tr>
<tr>
<td>Schwerpunkt Maschinenbau</td>
<td>8,2</td>
<td>8,4</td>
</tr>
<tr>
<td>Schwerpunkt Fahrzeugbau</td>
<td>9,1</td>
<td>9,5</td>
</tr>
<tr>
<td>übriges Produzierendes Gewerbe</td>
<td>3,1</td>
<td>3,2</td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>8,7</td>
<td>9,0</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>2,3</td>
<td>2,3</td>
</tr>
<tr>
<td><strong>Dienstleistungen</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>2,1</td>
<td>2,2</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>4,4</td>
<td>4,5</td>
</tr>
<tr>
<td>Darunter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schwerpunkt Finanzen und Vermögen</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Schwerpunkt Kommunikation</td>
<td>4,3</td>
<td>4,3</td>
</tr>
<tr>
<td>Schwerpunkt Technische Beratung und Forschung</td>
<td>30,1</td>
<td>30,5</td>
</tr>
<tr>
<td>Schwerpunkt Nichttechnische Beratung u. Forschung</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>Schwerpunkt Medien und Kultur</td>
<td>1,1</td>
<td>1,2</td>
</tr>
<tr>
<td>Schwerpunkt Gesundheit</td>
<td>0,6</td>
<td>0,7</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Darunter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Befristete und sonstige Überlassung von Arbeitskräften</td>
<td>0,9</td>
<td>1,2</td>
</tr>
<tr>
<td>übrige Wirtschaftszweige</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td><strong>Gewerbliche Wirtschaft</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>3,2</td>
<td>3,3</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>6,3</td>
<td>6,4</td>
</tr>
<tr>
<td><strong>Übrige Wirtschaft</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wissensintensive Wirtschaftszweige</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>nicht wissensintensive Wirtschaftszweige</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td><strong>Insgesamt</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,9</td>
<td>3,0</td>
<td>3,0</td>
</tr>
</tbody>
</table>

1) Anteil der Naturwissenschaftler/Ingenieure an den Beschäftigten insg. in %.
2) Anteil der Uni/FH-Absolventen an den Beschäftigten insg. in %.


Quelle: Bundesagentur für Arbeit, Sonderauswertung der Beschäftigtenstatistik. - Berechnungen des NIW.
- Demgegenüber konnte die Akademikerbeschäftigung in den übrigen Schwerpunktbereichen ausgebaut werden. In der Elektrotechnik/Elektronik/Optik ist eine Steigerung von 17,8 % auf 18,8 % zu beobachten, in Chemie/Pharma von 16,2 % auf 17,2 %, im Fahrzeugbau sogar um 1,3 Prozentpunkte auf 16,1 % und im Maschinenbau schließlich von 12,4 % auf 13,3 %.

Im übrigen Produzierenden Gewerbe haben ausschließlich die wissensintensiven Wirtschaftszweige ihren Akademikereinsatz ausbauen können (von 17,3 % auf 18,2 %).

Innerhalb des Dienstleistungssektors ist der relative Akademikereinsatz in nicht wissensintensiven Wirtschaftszweigen weitgehend konstant bei etwa 3,5 % geblieben. Gleichzeitig stieg die Intensität in wissensintensiven Dienstleistungen von 17,5 % auf 18,4 %, das jährliche Wachstum betrug dabei 3,4 %.

- Bei den Kommunikationsdienstleistungen haben selektiver Beschäftigungsabbau sowie absolut gestiegene Akademikerzahlen zu einer Erhöhung der Intensität von 25,1 % auf 27,3 % beigetragen.
- Noch höher ist der Akademikeranteil mit 36,5 % (2008: 35,4 %) nur im Bereich der Technischen Beratung und Forschung.
- In der Nichttechnischen Beratung und Forschung konnte die Akademikerintensität dank eines absoluten Wachstums um 4,8 % von 19,1 % auf 20,1 % gesteigert werden.
- Medien- und Kulturdienstleistungen weisen ebenfalls gegenüber 2008 (18,8 %) einen höheren Beschäftigungsanteil von Hochschulabsolvent(inn)en auf (19,5 %).
- Im Schwerpunkt Finanzen und Vermögen wurde der Akademikeranteil nur geringfügig von 12,2 % auf 12,7 % gesteigert.

Demgegenüber weisen die Gesundheitsdienstleistungen ein Wachstum bei Akademiker(inne)n in Höhe von jährlich 5,2 % auf, so dass ihr Beschäftigungsanteil mittlerweile bei 12,6 % liegt (2008: 11,9 %).

Weiterhin steigende Beschäftigtengrößen und -intensitäten in hochqualifizierten Tätigkeiten sind ebenso in der übrigen Wirtschaft, darunter vor allem im öffentlichen Sektor, zu beobachten.

Insgesamt konzentriert sich das Wachstum der Akademikerbeschäftigung und der Humankapitalintensität auffällig auf die – sowieso schon – wissensintensiven Wirtschaftszweige. Allerdings haben auch die nicht wissensintensiven Wirtschaftszweige die Beschäftigungsintensität von Hochschulabsolvent(inn)en steigern können.

### 2.3 Erwerbstätige in wissensintensiven Wirtschaftszweigen im internationalen Vergleich


Der internationale Vergleich knüpft inhaltlich an die Ausführungen im vorangehenden Kapitel an. Die verwendete Datenbasis ist mit der Europäischen Arbeitskräfteerhebung (Community Labor Force Survey) jedoch eine andere, verbunden mit zwei wesentlichen Unterschieden im Vergleich zur Beschäftigtenstatistik. Zum einen ist der Erwerbstätigenbegriff weiter gefasst als die Abgrenzung der sozialversicherungspflichtig Beschäftigten, insbesondere werden auch Selbständige, Beamte(n) und geringfügig Beschäftigte dazugezählt. Zum anderen ist nur eine weniger tiefe wirtschaftsfachliche Gliederung möglich, d. h. die Abgrenzung der Wirtschaftszweige erfolgt auf 2-Steller-Ebene.
Die Europäische Arbeitskräfteerhebung


Auswertungen der AKE sind auf drei Wegen zugänglich:

2. Sonderauswertungen (sog. „ad-hoc extractions“), die über die nationalen Büros bestellt werden können. In Deutschland ist der Europäische Datienservice des Statistischen Bundesamtes in Berlin zuständig.
3. AKE-Mikrodaten für wissenschaftliche Zwecke.

Die vorliegenden Analysen wurden entweder auf Grundlage der Sonderauswertungen (2.) oder eigener Auswertungen des Mikrodatensatzes (3.) vorgenommen. Der Vorteil der Mikrodaten liegt darin, relevante Analyseebenen durch vertiefende Untersuchungen bereits im Vorfeld identifizieren zu können. Da zu geringe Fallzahlen dazu führen, dass Teilergebnisse von Eurostat nicht ausgewiesen werden, können derartige Analysen nicht über die Sonderauswertungen erfolgen. Um solche Ausfälle, die zu unterschätzten Gesamtwerten bzw. verzerrten Strukturergebnissen zulasten gering besetzter Merkmale führen können, zu minimieren, stellen die Mikrodaten die primäre Datenquelle dar.

Zu den wichtigsten Nachteilen der Mikrodaten zählt zum einen die fehlende sektorale Tiefe. Während mit den ad-hoc extractions grundsätzlich (gegeben eine bestimmte Mindestfallzahl) Analysen bis auf 3-stelliger Wirtschaftszweigebene möglich sind, beschränkt sich die Wirtschaftszweiggliederung im Mikrodatensatz lediglich auf die einstellige Buchstabenebene der NACE rev. 2 (entspricht der WZ 2008).

Zum anderen stehen die Mikrodaten erst zum Ende des nachfolgenden Jahres zur Verfügung, im vorliegenden Fall zum Dezember 2011 für die Ergebnisse des Jahres 2010. Sonderauswertungen können etwa ein halbes Jahr früher durchgeführt werden, allerdings sind diese Ergebnisse aufgrund fallzahlbedingter Ausfälle weniger belastbar.


2.3.1 Hochqualifizierte Erwerbstätige in der Gesamtwirtschaft

Die Beschäftigung von Akademiker(inne)n zählt zu den wichtigsten Indikatoren zur Bewertung der nationalen und sektoralen Ausgangsposition im Strukturwandel und Innovationswettbewerb. Gerade eine akademische Ausbildung bereitet die Grundlage für die Anpassungsfähigkeit im Beruf, das strategische Denken, Erkennen von (Markt-)Möglichkeiten sowie die fachliche Basis für Forschung und Innovation. Hier wird zunächst der Anteil Erwerbstätiger mit einer Hochschulausbildung (ISCED 5A) bzw. einer Promotion (ISCED 6) innerhalb der Gewerblichen Wirtschaft betrachtet.
Im europäischen Vergleich nimmt Deutschland in dieser Hinsicht seit jeher eine hintere Position ein (Abb. 2.4). Mit einem Anteil von 17,7 % an akademisch qualifizierten Erwerbstätigen beträgt der Abstand zum Durchschnitt der europäischen Vergleichsländer (22,7 %) fünf Prozentpunkte. Von den Ländern Korneuropas haben lediglich Belgien (20,3 %), Frankreich (19,6 %) und Österreich (12,2 %) ähnlich hohe bzw. niedrige Werte wie Deutschland. Mit Abstand am höchsten ist der Akademikeranteil in Norwegen (33,9 %). Dahinter folgen u. a. die Niederlande (30,4 %), Großbritannien (27,2 %) sowie weitere nordeuropäische und auch baltische Staaten.

Im Vergleich zum Vorjahr hat die Akademikerintensität in vielen Ländern zugenommen. Dies ist meist auf steigende absolute Zahlen von Akademiker(inne)n bei gleichzeitig sinkender Gesamtbeschäftigung zurückzuführen: Für die EU-15 ergibt sich bspw. ein Plus von 1,7 % bei Akademiker(inne)n und ein Minus von -0,6 % bei den Erwerbstätigen insgesamt. In Deutschland hingegen sind Gesamt- und Akademikerbeschäftigung gleichermassen um 0,7 % bzw. 0,8 % ausgeweitet worden, so dass der Anteilswert unverändert geblieben ist.

Der vergleichsweise geringe Akademikeranteil in Deutschland ist auch vor dem Hintergrund des hier besonders ausgeprägten mittleren Bildungssegments zu sehen. Von Interesse sind darunter zum einen berufspraktische Qualifikationen, die vom Niveau her mit einer akademischen Ausbildung gleichzusetzen sind, insbesondere aber auf einer abgeschlossenen beruflichen Ausbildung aufbauen. Dies betrifft in Deutschland vor allem die postsekundären Fortbildungsabschlüsse, insbesondere Meister und Techniker (ISCED 5B).

Abb. 2.4: Akademikeranteil (ISCED 5A+6) in der Gesamtwirtschaft 2009 und 2010 im europäischen Vergleich

Quelle: Eurostat, Europäische Arbeitskräfteerhebung (Mikrodaten). - Berechnungen des NIW.

Ähnliche Befunde zeigen sich auch im Hinblick auf die Gesamtbevölkerung im Alter zwischen 25 und 64 Jahren (Abchnitt 3.6.2). Demnach beträgt der M. Anteil in Deutschland auf 17 %, während der OECD-Durchschnitt 21 % beträgt und Länder wie beispielsweise die USA (31 %) Australien (27 %), Japan (25 %) und Kanada (25 %) weit darüber liegen. Dies ist allerdings zum Teil auch der Zuordnung von Bildungsgängen zum akademischen Niveau geschuldet, die in Deutschland eher der beruflichen Bildung zugerechnet werden.
Darüber hinaus werden an dieser Stelle ebenso bestimmte Qualifikationen betrachtet, die zwar noch im mittleren Bildungssegment angesiedelt sind, aber ebenfalls vertiefenden, über das Niveau einer Erstausbildung in diesem Bereich hinausgehenden, Charakter besitzen (ISCED 4). Die Stufe ISCED 4 wird charakterisiert als postsekundäre, aber nicht tertiäre Bildung. Zusätzlich wird darin unterschieden, ob ein Abschluss für den wissenschaftlich orientierten tertiären Bereich qualifiziert (ISCED 4A für 5A) oder für den praxisorientierten (ISCED 4B für 5B) (Abb. 2.5). Abschlüsse der Stufe 4C umfassen dagegen keine Zugangsberechtigung für einen höheren Bildungsgang, sondern sind ausschließlich auf den Arbeitsmarkt ausgerichtet. In Deutschland ist die Stufe 4C unter den Erwerbstätigen kaum verbreitet.

**Abb. 2.5: Übersicht deutscher Bildungsprogramme in der Stufe ISCED 4**

<table>
<thead>
<tr>
<th>4A: Programme, die Zugang zu ISCED 5A vermitteln</th>
<th>4B: Programme, die Zugang zu ISCED 5B vermitteln</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abendgymnasien, Kollegs</td>
<td>Kombination aus zwei berufsbildenden Programmen in ISCED 3B:</td>
</tr>
<tr>
<td>1-jährige Fachoberschulen, Berufs-/Technische Oberschulen</td>
<td>- Berufsschulen (Duales System), dann Berufsfachschule, die einen Berufsabschluss vermittelt</td>
</tr>
<tr>
<td>Kombination aus einem allgemeinbildenden Programm (ISCED 3A) und einem berufsbildenden Programm (ISCED 3B):</td>
<td>- Berufsfachschule, die einen Berufsabschluss vermittelt, dann Berufsschulen (Duales System)</td>
</tr>
<tr>
<td>- Studienberechtigung, dann Berufsschulen (Duales System)</td>
<td>- Zwei Berufsausbildungen im Dualen System nacheinander</td>
</tr>
<tr>
<td>- Studienberechtigung, dann Berufsfachschule, die einen Berufsabschluss vermittelt</td>
<td>- Umschüler(innen) an Berufsschulen (Duales System)</td>
</tr>
<tr>
<td>- Berufsschulen (Duales System), dann Studienberechtigung</td>
<td></td>
</tr>
<tr>
<td>- Berufsfachschule, die einen Berufsabschluss vermittelt, dann Studienberechtigung</td>
<td></td>
</tr>
<tr>
<td>- Gleichzeitiger Erwerb von Studienberechtigung und Berufsabschluss (an Berufsfachschulen u. teilweise an Fachgymnasien)</td>
<td></td>
</tr>
</tbody>
</table>


Soweit die Mikrodaten der Europäischen Arbeitskräfteerhebung eine eindeutige Zuordnung zu den Stufen 4A/B oder 4C erlauben,8 lassen sich die europäischen Länder anhand der Bedeutung der Bildungsabschlüsse im Bereich der ISCED 4 in drei Gruppen aufteilen:

**Abb. 2.6: Bedeutung der Stufe ISCED 4 unter den Erwerbstätigen in Europa**

<table>
<thead>
<tr>
<th>Länder, in denen überwiegend 4A bzw. 4B verbreitet sind</th>
<th>Länder, in denen überwiegend 4C verbreitet ist</th>
<th>Länder, in denen ISCED 4 überhaupt nicht verbreitet ist</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT, AT, DE, LV, EE, SE, RO, HU</td>
<td>IE, GR, IS, PL, NL, (MT), (IT), (FI), (BG)</td>
<td>(BG), DK, ES, (FI), FR, (IT), SI, SK, UK</td>
</tr>
</tbody>
</table>


Da die Erwerbstätigen mit Abschlüssen unterhalb des tertiären Niveaus gleichzeitig einen ausbildungsähnlichen Status aufweisen können, wird der Kreis der Erwerbstätigen im Folgenden nur auf Personen beschränkt, die sich zum Befragungszeitpunkt nicht in einer Ausbildung oder dergleichen befinden (Abb. 2.7). Die Anteilswerte für die Akademiker(innen) verändern sich dadurch nur unwesentlich, in Deutschland z. B. von 17,7 % (einschließlich Personen in Ausbildung) auf 17,6 % (ohne Erwerbstätige in Ausbildung).9

---

8 Davon betroffen sind NO, LU, BE, CY, CZ, PT sowie auch MT, in dem allerdings ein leichter Schwerpunkt auf ISCED 4C zu beobachten ist.
9 Diese Einschränkung betrifft die Zahl der Akademiker(innen) (5,9 Mio. zu 6,9 Mio.) und der Erwerbstätigen insgesamt (33,8 Mio. zu 38,7 Mio.) relativ betrachtet also in gleichem Maße.
Deutlich wird zunächst, dass viele Länder mit unterschiedlich hohen Akademikeranteilen das Niveau eines ISCED 5B- oder ISCED 4-Abschlusses kaum in ihrer nationalen Qualifikationsstruktur kennen. Dies ist vor allem auf die jeweiligen Bildungssysteme zurückzuführen. In Deutschland sind diese beiden Qualifikationsniveaus hingegen besonders stark vertreten. Mit einem Anteil von 10,0 % der Erwerbstätigen mit einem Abschluss auf Höhe der ISCED-Stufe 5B gehört Deutschland etwa in das obere Drittel der Vergleichsländer (Position 10 von 29). Der Mittelwert über alle europäischen Länder beträgt 7,1 %. Besonders ausgeprägt ist die Stufe ISCED 5B unter den Erwerbstätigen in Belgien (19,9 %), Irland (17,7 %), Luxemburg (15,3 %) und Finnland (14,3 %). Von den größeren Ländern weist Frankreich ebenfalls mit 13,3 % einen hohen Anteil an Erwerbstätigen auf ISCED-Niveau 5B auf.

Obwohl weitere Analysen auf Branchenebene aufgrund der geringen Stichprobengröße der AKE in dieser Tiefe nicht möglich sind, ist anzunehmen, dass die Bedeutung von ISCED 5B vor allem auf zwei Faktoren zurückzuführen ist: zum einen das Gewicht der Industrie, die den Großteil von Meister(inne)n und Techniker(inne)n beschäftigt; zum anderen die hier ebenfalls eingehenden Abschlüsse des Gesundheitswesens, die in anderen Ländern zum Teil akademischen Abschlüssen entsprechen.

Hinsichtlich des ISCED-Levels 4 ist Deutschland an siebter Stelle im europäischen Vergleich zu finden: Der Erwerbstätigenanteil beträgt 8,1 %. Dies ist fast doppelt so hoch wie der Länderdurchschnitt in Höhe von 4,6 %. Die höchsten Anteile sind dabei vor allem in Lettland (23,0 %), Irland (12,4 %), Malta (11,3 %) und Österreich (10,9 %) zu finden.

An der Schnittstelle zur mittleren Qualifikation bzw. des qualifizierten berufspraktischen Bereichs ist für Deutschland damit insgesamt eine bessere Position festzustellen als anhand der akademischen Qualifikation allein. Dies ist einerseits im Hinblick auf die Transmission von Impulsen aus dem mittleren in den oberen Qualifikationsbereich (Ideen aus dem berufspraktischen Bereich) wie auch in umgekehrter Richtung (Umsetzung innovativer bzw. strategischer Impulse) von Bedeutung. Andererseits wird damit auch insgesamt ein überdurchschnittlich hoher Humankapitaleinsatz in der Herstellung hochwertiger Erzeugnisse bzw. der Erbringung von Dienstleistungen gewährleistet. Dennoch nimmt Deutschland auch einschließlich dieser im Vergleich zum akademischen Bereich niedrigeren, aber ebenfalls wichtigen Qualifikationsstufen im europäischen Vergleich keine Spitzenposition ein: Mit
insgesamt 35,7 % an allen Erwerbstätigen wird zwar der europäische Durchschnitt leicht übertroffen (33,2 %), allerdings liegen einige kleine und mittelgroße Länder wie Lettland (62,2 %), Irland (55,2 %), Estland (42,2 %) und Belgien (41,8 %) deutlich vor Deutschland. Frankreich als großes Vergleichsland liegt mit einem Anteil von 32,5 % nahezu gleichauf.

2.3.2 Sektoraler Humankapitaleinsatz

Formales Bildungsniveau der Beschäftigten

In Deutschland ist nicht nur in der Gesamtwirtschaft ein im europäischen Vergleich unterdurchschnittlicher Akademikeranteil zu beobachten, sondern auch innerhalb der Gewerblichen Wirtschaft sowie der wissensintensiven Wirtschaftszweige. Der Akademikeranteil in der Gewerblichen Wirtschaft im Jahr 2010 beträgt in Deutschland 14,7 %, wohingegen in der EU-15 18,1 % der Erwerbstätigen einen akademischen Abschluss aufweisen (Abb. 2.8). Der generell niedrigere Akademikeranteil der Gewerblichen Wirtschaft im Vergleich zur Gesamtwirtschaft ist dabei insbesondere auf den hier vernachlässigten öffentlichen Sektor zurückzuführen, in dem ebenfalls relativ viele Hochqualifizierte beschäftigt werden.

Von den betrachteten Ländern und Ländergruppen nimmt Deutschland damit die letzte Position ein. In Frankreich liegt der Akademikeranteil in der Gewerblichen Wirtschaft bei 17,4 %, in Großbritannien sogar bei 23,2 %. Die Länder Kerneuropas weisen zusammen einen Anteil von 19,8 % auf, in Nordeuropa 22,8 %. Geschuldet ist der geringere Humankapitaleinsatz in Deutschland vor allem dem niedrigeren Strukturgewicht wissensintensiver Dienstleistungen in der Gesamtwirtschaft, die für sich genommen bereits viele Akademiker(innen) beschäftigen. Aber auch innerhalb dieses Wirtschaftssektors ist in Deutschland ein relativ geringer Akademikeranteil festzustellen: 30,9 % in Deutschland gegenüber 40 % und mehr in der EU-15 insgesamt sowie in den meisten Vergleichsregionen.

Darüber hinaus liegt in Deutschland auch die Beschäftigungsintensität von Akademiker(inne)n im wissensintensiven Verarbeitenden Gewerbe niedriger als in den meisten anderen europäischen Ländern, wenn auch nicht so deutlich wie im Hinblick auf die wissensintensiven Dienstleistungen: Im Jahr 2010 betrug der Akademikeranteil in diesem Sektor 19,0 %, gegenüber beispielsweise 23,0 % in der EU-15 bis hin zu 31,1 % im Durchschnitt der Länder Nordeuropas.

Zwischen 2008 und 2010 ist die Akademikerbeschäftigung im Verhältnis zur Erwerbstätigkeit insgesamt deutlich gestiegen; in der EU-15 ergibt sich ein Zuwachs von 16,9 % auf 18,1 %. Am deutlichsten hat der Akademikeranteil um 2,5 Prozentpunkte in Großbritannien zugenommen, wo die Gesamtbeschäftigung am stärksten von der Wirtschaftskrise betroffen war. Wie bereits beschrieben, ist die geringe Veränderung in Deutschland von 14,2 % auf 14,7 % vor allem auf die ebenfalls relativ geringe Entwicklung der Gesamtbeschäftigung zurückzuführen, die den Akademikeranteil im Zeitablauf niedrig hält. Mit Deutschland vergleichbar ist in dieser Hinsicht nur die Ländergruppe Kerneuropas, wo ebenfalls nur geringe Veränderungen in der relativen Beschäftigungsintensität von Akademiker(inne)n zu verzeichnen sind (19,0 % auf 19,8 %).

Beim Einsatz hochqualifizierter Arbeitskräfte ist darüber hinaus relevant, in welchen Bereichen sie eingesetzt werden. Dies kann mit Blick auf den ausgeübten Beruf untersucht werden. Die Art der Ausbildung spielt hierbei keine Rolle. Vielmehr können Erwerbstätige unabhängig davon, ob sie beispielsweise einen Abschluss als Techniker(in) (ISCED 5B) oder eine Promotion in einer beliebigen Fachrichtung (ISCED 6) aufweisen, grundsätzlich denselben Beruf ausüben. Für die Qualität der Tätigkeit mag dies zwar im Detail einen Unterschied machen, dennoch werden damit die Unterschiede, die allein von den nationalen Zuordnungskonventionen verursacht werden, zumindest ausgeglichen. Die Interpretation der betrachteten Berufsgruppen erfolgt dabei analog zu den Untersuchungen der sozialversicherungspflichtig Beschäftigten für Deutschland.
Bildung, Qualifikation und technologische Leistungsfähigkeit

Abb. 2.8: Akademikeranteil (ISCED 5A+6) in wissensintensiven Sektoren der Gewerblichen Wirtschaft 2008 und 2010 im europäischen Vergleich

Erläuterungen: Nordeuropa: SE, FI, NO, DK, IS, IE; Südeuropa: ES, IT, PT, GR; Kerneuropa: CH, AT, BE, LU, NL; NMS (Neue Mitgliedstaaten, EU-12 neu).

Quelle: Eurostat, Europäische Arbeitskräfteerhebung (Sonderauswertung). - Berechnungen des NIW.
Erwerbstätige in akademischen Berufen

Die Unterschiede beim Einsatz von Arbeitskräften in akademisch geprägten Berufsgruppen sind insgesamt geringer als in Bezug auf den rein ausbildungs­basierten Akademikeranteil. Die Position Deutschlands stellt sich hierbei zudem etwas besser dar (Abb. 2.9): Mit einem Erwerbstätigenanteil von 11,6 % in der Gewerblichen Wirtschaft liegen Großbritannien (11,3 %) und Frankreich (11,1 %) leicht dahinter, die Länder Kern- und Nordeuropas (13,2 % bzw. 15,8 %) allerdings weiterhin davor. Der Durchschnitt der EU-15 beträgt 11,1 %. Auf ähnlichem Niveau bewegt sich der Anteil akademischer Berufsgruppen in den USA (11,0 %) sowie in Japan (10,5 %).

In den wissensintensiven Wirtschaftszweigen hingegen ist der Erwerbstätigenanteil in akademischen Berufen in Deutschland mit 23,2 % eher unterdurchschnittlich, insbesondere im Vergleich zu den Ländergruppen Kerneuropa (30,2 %) und Nordeuropa (34,4 %), aber auch Japan (28,1 %). Diese relative Position Deutschlands findet sich auch auf tieferer Ebene wieder. In den wissensintensiven Industrien beträgt der Erwerbstätigenanteil akademischer Berufsgruppen 16,4 %, was vor allem geringer ist als in Frankreich (19,1 %), Großbritannien (18,4 %) und den nordeuropäischen Ländern (20,0 %). Besonders gering ist die Akademikerintensität Deutschlands im internationalen Vergleich darunter bei der Herstellung von chemischen (12,8 %) bzw. pharmazeutischen Erzeugnissen (19,7 %). Nur in den Ländern Kerneuropa sowie zum Teil in den USA (Chemie) bzw. Japan (Pharma) ist der Akademikeranteil geringer. Überdurchschnittlich hoch ist der Anteil von Erwerbstätigen in akademischen Berufen dagegen im Maschinenbau (14,5 %), der lediglich in den Ländern Nordeuropas mit einer höheren Akademikerintensität (16,3 %) produziert, sowie im deutschen Fahrzeugbau (17,0 %), der in dieser Hinsicht nur von Großbritannien (17,7 %) übertroffen wird.

Im Bereich der wissensintensiven Dienstleistungen befindet sich Deutschland mit 27,0 % ebenfalls eher im internationalen Durchschnitt – vor Frankreich (24,9 %), Großbritannien (24,7 %) und den USA (26,2 %), allerdings deutlich hinter den Regionen Kerneuropa (34,3 %), Nordeuropa (38,4 %) sowie Japan (36,7 %). Im Vergleich zu den meisten anderen Wirtschaftszweigen werden in Deutschland in den IuK-Dienstleistungen zwar relativ viele Akademiker(innen) eingesetzt (40,7 %), allerdings ist dieser Anteil zusammen mit Großbritannien (40,5 %) im internationalen Vergleich eher niedrig. Auf niedrigerem Niveau betrifft dies ebenfalls die Finanzdienstleistungen (9,2 %) sowie das Gesundheitswesen (19,2 % gegenüber Kerneuropa mit 33,7 % oder auch Japan mit 45,4 % oder die USA mit 49,9 %).10 Eher überdurchschnittlich ist der Erwerbstätigenanteil von akademischen Berufsgruppen lediglich im Bereich der technischen Beratung und Forschung (46,9 %), wo nur die Ländergruppe Nordeuropa (49,8 %) sowie Japan (47,7 %) etwas mehr hochqualifizierte Tätigkeiten einsetzen.

Der Einsatz von Wissenschaftler(inne)n, d. h. Naturwissenschaftler(inne)n und Ingenieur(inn)en, be- läuft sich in Deutschland in der Gewerblichen Wirtschaft insgesamt auf 5,3 %, darunter in wissensintensiven Wirtschaftszweigen auf 10,1 % im Jahr 2010 (Abb. 2.10). Auch in dieser Hinsicht bewegt sich Deutschland eher im internationalen Durchschnitt – vor allem die Länder Nordeuropas setzen in relativ stärkerem Umfang Naturwissenschaftler(innen) und Ingenieure ein: 6,3 % in der Gewerblichen Wirtschaft, 13,6 % in den wissensintensiven Wirtschaftszweigen.

In den wissensintensiven Industrien werden insbesondere in Frankreich (18,1 %) deutlich mehr Wissenschaftler(innen)beschäftigts als in Deutschland (12,6 %), aber auch in Nordeuropa (15,2 %) sowie in Großbritannien (14,9 %) und den USA (14,1 %) ist die Wissenschaftlerintensität höher. Dieser unterschiedliche Wissenschaftleranteil Deutschlands zeigt sich auch bezogen auf die industriellen Schwerpunktbereiche. Besonders groß ist der Abstand in der Herstellung von Datenverarbeitungsgeräten, elektronischen und optischen Erzeugnissen, wo mit 19,1 % im sektoralen Vergleich der Wissenschaftleranteil am höchsten ausfällt: Hier weisen Länder bzw. Regionen wie Frankreich (31,7 %), Nordeuropa (28,5 %) und auch die USA (26,3 %) deutlich höhere Anteile auf. Von den wichtigen

---

10 Im Gesundheitswesen werden die deutlichen Unterschiede in den Akademikerquoten vor allem auch von nationalen Konventionen bei der Ausbildung von Pflegeberufen bestimmt (Einordnung der auf ISCED 5A- Niveau als akademische Ausbildung oder Einordnung auf 5B-Niveau wie z. B. in Deutschland).
Bildung, Qualifikation und technologische Leistungsfähigkeit

Vergleichsländern bzw.-regionen sind nur in Kerneuropa die Beschäftigungsanteile von Naturwissenschaftler(inne)n und Ingenieur(inn)en in allen betrachteten Industriezweigen noch geringer als in Deutschland.

Abb. 2.9: Einsatz von akademischen Berufsgruppen (ISCO 2) in Europa, USA und Japan 2010 (in %)

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>DE</th>
<th>FR</th>
<th>UK</th>
<th>KERN</th>
<th>NORD</th>
<th>SÜD</th>
<th>EU-15</th>
<th>NMS</th>
<th>US</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissensintensive Industrien</td>
<td>16.4</td>
<td>19.1</td>
<td>18.4</td>
<td>12.2</td>
<td>20.0</td>
<td>8.3</td>
<td>15.0</td>
<td>9.0</td>
<td>18.8</td>
<td>12.3</td>
</tr>
<tr>
<td>H. v. chemischen Erzeugnissen</td>
<td>12.8</td>
<td>22.2</td>
<td>19.2</td>
<td>12.7</td>
<td>15.4</td>
<td>7.8</td>
<td>13.9</td>
<td>10.3</td>
<td>10.6</td>
<td>14.7</td>
</tr>
<tr>
<td>H. v. pharmazeutischen Erzeugnissen</td>
<td>19.7</td>
<td>20.3</td>
<td>27.6</td>
<td>14.4</td>
<td>26.3</td>
<td>23.6</td>
<td>22.2</td>
<td>23.9</td>
<td>29.6</td>
<td>11.8</td>
</tr>
<tr>
<td>H. v. DV-Geräte, elektron. U. optischen Erz.</td>
<td>23.7</td>
<td>32.6</td>
<td>24.3</td>
<td>22.1</td>
<td>32.7</td>
<td>14.8</td>
<td>24.0</td>
<td>9.8</td>
<td>32.5</td>
<td>18.3</td>
</tr>
<tr>
<td>H. v. elektrischen Ausrüstungen</td>
<td>13.3</td>
<td>12.8</td>
<td>14.8</td>
<td>9.6</td>
<td>15.6</td>
<td>5.3</td>
<td>10.8</td>
<td>7.4</td>
<td>10.6</td>
<td>13.1</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>14.5</td>
<td>14.7</td>
<td>11.6</td>
<td>10.5</td>
<td>16.3</td>
<td>4.8</td>
<td>11.9</td>
<td>10.0</td>
<td>11.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>17.0</td>
<td>16.8</td>
<td>17.7</td>
<td>8.5</td>
<td>14.2</td>
<td>6.9</td>
<td>14.2</td>
<td>6.8</td>
<td>16.7</td>
<td>10.0</td>
</tr>
<tr>
<td>Übriges Verarbeitendes Gewerbe</td>
<td>4.6</td>
<td>6.0</td>
<td>5.1</td>
<td>4.8</td>
<td>5.7</td>
<td>2.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Wissensint. übriges produzierendes Gewerbe</td>
<td>17.5</td>
<td>22.1</td>
<td>21.1</td>
<td>15.6</td>
<td>17.7</td>
<td>13.2</td>
<td>17.9</td>
<td>14.7</td>
<td>13.9</td>
<td>10.8</td>
</tr>
<tr>
<td>dar.: Netzgebundene Versorgung</td>
<td>17.8</td>
<td>22.2</td>
<td>19.2</td>
<td>14.3</td>
<td>19.1</td>
<td>12.3</td>
<td>17.4</td>
<td>14.2</td>
<td>14.2</td>
<td>11.3</td>
</tr>
<tr>
<td>Nicht wissensint. übriges prod. Gewerbe</td>
<td>5.2</td>
<td>4.7</td>
<td>7.0</td>
<td>3.7</td>
<td>3.7</td>
<td>2.5</td>
<td>4.3</td>
<td>5.8</td>
<td>3.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Wissensintensive Dienstleistungen</td>
<td>27.0</td>
<td>24.9</td>
<td>24.7</td>
<td>34.3</td>
<td>38.4</td>
<td>32.9</td>
<td>29.3</td>
<td>40.0</td>
<td>26.2</td>
<td>36.7</td>
</tr>
<tr>
<td>Medien und Kultur</td>
<td>38.3</td>
<td>43.6</td>
<td>29.7</td>
<td>41.4</td>
<td>46.3</td>
<td>40.8</td>
<td>38.9</td>
<td>40.5</td>
<td>35.1</td>
<td>16.2</td>
</tr>
<tr>
<td>lnK Dienstleistungen</td>
<td>40.7</td>
<td>53.3</td>
<td>40.5</td>
<td>43.3</td>
<td>52.1</td>
<td>24.8</td>
<td>39.8</td>
<td>43.9</td>
<td>41.6</td>
<td>55.7</td>
</tr>
<tr>
<td>Finanzdienstleistungen</td>
<td>9.2</td>
<td>5.3</td>
<td>11.6</td>
<td>14.1</td>
<td>17.0</td>
<td>9.4</td>
<td>10.1</td>
<td>33.1</td>
<td>24.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Nichttechn. Beratung u. Forschung</td>
<td>36.7</td>
<td>22.5</td>
<td>34.1</td>
<td>41.2</td>
<td>43.9</td>
<td>43.3</td>
<td>37.2</td>
<td>43.2</td>
<td>39.5</td>
<td>42.2</td>
</tr>
<tr>
<td>Techn. Beratung u. Forschung</td>
<td>46.9</td>
<td>42.6</td>
<td>37.0</td>
<td>41.0</td>
<td>49.8</td>
<td>44.0</td>
<td>43.3</td>
<td>52.0</td>
<td>43.6</td>
<td>47.7</td>
</tr>
<tr>
<td>Gesundheitswesen</td>
<td>19.2</td>
<td>17.2</td>
<td>16.8</td>
<td>33.7</td>
<td>31.6</td>
<td>35.6</td>
<td>24.6</td>
<td>37.3</td>
<td>15.1</td>
<td>45.4</td>
</tr>
<tr>
<td>Übrige gewerbliche Dienstleistungen</td>
<td>3.8</td>
<td>3.5</td>
<td>3.2</td>
<td>3.8</td>
<td>4.1</td>
<td>1.8</td>
<td>3.1</td>
<td>4.2</td>
<td>2.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Wissensint. gewerbliche Wirtschaft insgesamt</td>
<td>23.2</td>
<td>23.7</td>
<td>23.7</td>
<td>30.2</td>
<td>34.4</td>
<td>27.0</td>
<td>25.7</td>
<td>28.8</td>
<td>24.8</td>
<td>28.1</td>
</tr>
<tr>
<td>Nicht wissensint. gewerb. Wirtschaft insg.</td>
<td>4.2</td>
<td>4.2</td>
<td>4.1</td>
<td>4.0</td>
<td>4.3</td>
<td>2.0</td>
<td>3.5</td>
<td>4.5</td>
<td>3.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Gewerbliche Wirtschaft</td>
<td>11.6</td>
<td>11.1</td>
<td>11.3</td>
<td>13.2</td>
<td>15.8</td>
<td>8.9</td>
<td>11.1</td>
<td>11.1</td>
<td>11.0</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Erläuterungen: Nordeuropa: SE, FI, NO, DK, IS, IE; Südeuropa: ES, IT, PT, GR; Kerneuropa: CH, AT, BE, LU, NI; NMS (Neue Mitgliedsstaaten, EU-12 neu).
Quelle: Eurostat, Europäische Arbeitskräfteerhebung. - Berechnungen des NIW.

Im Bereich der wissensintensiven Dienstleistungen zeichnen sich die meisten Wirtschaftszweige in Deutschland in internationaler Perspektive ebenfalls durch vergleichsweise geringe Wissenschaftlerintensitäten aus. Lediglich die Technische Beratung und Forschung beschäftigt mit 35,5 % nicht nur im sektoralen Vergleich innerhalb Deutschlands, sondern auch nach internationalen Maßstäben die meisten Naturwissenschaftler(innen) und Ingenieur(inn)en(n). Nur Japan liegt mit 34,4 % etwa auf diesem Niveau. Ein anderer Wirtschaftszweig mit hohem Wissenschaftleranteil ist die lnK-Dienstleistungen, hier fällt Deutschland mit 31,4 % jedoch deutlich hinter alle anderen wichtigen Vergleichsländer und -ländergruppen zurück. Beispielsweise beträgt der Wissenschaftleranteil der lnK-Dienstleistungen in Frankreich 47 % und auch die Länder Nordeuropas weisen mit 45,1 % eine weSENTLICH höhere Intensität auf als Deutschland.
Qualifikationsstrukturen und Wissensintensivierung in Deutschland und Europa

Abb. 2.10: Einsatz von Naturwissenschaftlern und Ingenieuren (ISCO 21) in Europa, USA und Japan 2010 (in %)

<table>
<thead>
<tr>
<th>Wirtschaftszweig</th>
<th>DE</th>
<th>FR</th>
<th>UK</th>
<th>KERN</th>
<th>NORD</th>
<th>SÜD</th>
<th>EU-15</th>
<th>NMS</th>
<th>US</th>
<th>JP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissensintensive Industrien</td>
<td>12.6</td>
<td>18.1</td>
<td>14.9</td>
<td>8.4</td>
<td>15.2</td>
<td>6.2</td>
<td>11.9</td>
<td>6.2</td>
<td>14.1</td>
<td>11.1</td>
</tr>
<tr>
<td>H. v. chemischen Erzeugnissen</td>
<td>8.7</td>
<td>20.9</td>
<td>15.3</td>
<td>7.2</td>
<td>9.8</td>
<td>4.8</td>
<td>10.3</td>
<td>5.6</td>
<td>7.8</td>
<td>12.3</td>
</tr>
<tr>
<td>H. v. pharmazeutischen Erzeugnissen</td>
<td>9.3</td>
<td>15.7</td>
<td>12.4</td>
<td>6.1</td>
<td>15.1</td>
<td>14.4</td>
<td>12.4</td>
<td>8.4</td>
<td>13.5</td>
<td>11.3</td>
</tr>
<tr>
<td>H. v. Datenverarbeitungsgeräten, elektr. und optischen Erz.</td>
<td>19.1</td>
<td>31.7</td>
<td>21.1</td>
<td>16.9</td>
<td>28.5</td>
<td>12.0</td>
<td>20.3</td>
<td>7.1</td>
<td>26.3</td>
<td>15.4</td>
</tr>
<tr>
<td>H. v. elektrischen Ausrüstungen</td>
<td>10.9</td>
<td>12.8</td>
<td>11.7</td>
<td>7.2</td>
<td>12.5</td>
<td>4.4</td>
<td>9.1</td>
<td>5.5</td>
<td>7.6</td>
<td>11.9</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>12.1</td>
<td>14.2</td>
<td>10.1</td>
<td>7.9</td>
<td>12.5</td>
<td>4.0</td>
<td>10.0</td>
<td>7.8</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>Fahrzeugbau</td>
<td>12.8</td>
<td>16.4</td>
<td>16.5</td>
<td>6.9</td>
<td>10.7</td>
<td>5.3</td>
<td>11.6</td>
<td>5.2</td>
<td>12.8</td>
<td>9.4</td>
</tr>
<tr>
<td>Übrige Industrien</td>
<td>2.8</td>
<td>5.8</td>
<td>4.0</td>
<td>2.1</td>
<td>3.3</td>
<td>1.0</td>
<td>2.7</td>
<td>2.1</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Wissensint. übriges produzierendes Gewerbe</td>
<td>11.8</td>
<td>20.3</td>
<td>16.9</td>
<td>9.5</td>
<td>12.3</td>
<td>9.4</td>
<td>13.6</td>
<td>9.8</td>
<td>9.1</td>
<td>10.3</td>
</tr>
<tr>
<td>Netzgebundene Versorgung</td>
<td>11.6</td>
<td>20.2</td>
<td>14.5</td>
<td>8.7</td>
<td>13.0</td>
<td>8.7</td>
<td>12.9</td>
<td>9.1</td>
<td>8.7</td>
<td>10.8</td>
</tr>
<tr>
<td>Nicht wissensint. übriges produzierendes Gewerbe</td>
<td>4.6</td>
<td>4.2</td>
<td>6.4</td>
<td>2.7</td>
<td>2.6</td>
<td>2.0</td>
<td>3.7</td>
<td>4.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Wissensintensive Dienstleistungen</td>
<td>8.8</td>
<td>10.6</td>
<td>9.4</td>
<td>10.2</td>
<td>13.3</td>
<td>7.9</td>
<td>9.5</td>
<td>9.2</td>
<td>8.6</td>
<td>9.7</td>
</tr>
<tr>
<td>Medien und Kultur</td>
<td>6.2</td>
<td>7.9</td>
<td>3.3</td>
<td>2.0</td>
<td>4.4</td>
<td>2.0</td>
<td>4.5</td>
<td>4.4</td>
<td>10.8</td>
<td>0.8</td>
</tr>
<tr>
<td>InK Dienstleistungen</td>
<td>31.4</td>
<td>47.0</td>
<td>35.9</td>
<td>38.2</td>
<td>45.1</td>
<td>21.1</td>
<td>33.9</td>
<td>35.0</td>
<td>34.0</td>
<td>32.4</td>
</tr>
<tr>
<td>Finanzdienstleistungen</td>
<td>3.1</td>
<td>4.2</td>
<td>5.1</td>
<td>5.4</td>
<td>6.2</td>
<td>1.7</td>
<td>3.8</td>
<td>2.5</td>
<td>6.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Nichttechn. Beratung u. Forschung</td>
<td>2.3</td>
<td>5.0</td>
<td>3.2</td>
<td>6.4</td>
<td>7.1</td>
<td>0.9</td>
<td>3.2</td>
<td>1.8</td>
<td>6.3</td>
<td>0.9</td>
</tr>
<tr>
<td>Techn. Beratung u. Forschung</td>
<td>35.5</td>
<td>29.3</td>
<td>29.1</td>
<td>27.4</td>
<td>31.0</td>
<td>33.3</td>
<td>31.6</td>
<td>36.0</td>
<td>27.9</td>
<td>34.3</td>
</tr>
<tr>
<td>Gesundheitswesen</td>
<td>0.9</td>
<td>0.1</td>
<td>0.4</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Übrige gewerbliche Dienstleistungen</td>
<td>1.4</td>
<td>1.7</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
<td>0.4</td>
<td>1.0</td>
<td>0.9</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Wissensint. gewerbliche Wirtschaft insgesamt</td>
<td>10.1</td>
<td>12.5</td>
<td>10.5</td>
<td>9.9</td>
<td>13.6</td>
<td>7.6</td>
<td>10.2</td>
<td>8.4</td>
<td>9.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Nicht wissensint. gewerbliche Wirtschaft insgesamt</td>
<td>2.2</td>
<td>2.9</td>
<td>2.3</td>
<td>1.5</td>
<td>1.8</td>
<td>0.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Gewerbliche Wirtschaft</td>
<td>5.3</td>
<td>6.3</td>
<td>5.3</td>
<td>4.5</td>
<td>6.3</td>
<td>2.7</td>
<td>4.7</td>
<td>3.6</td>
<td>4.0</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Quelle: Eurostat, Europäische Arbeitskräfteerhebung. - Berechnungen des NIW.

Dieser doch sehr breit zu beobachtende Rückstand Deutschlands in der Wissenschaftlerbeschäftigung wiegt umso schwerer, als die hohe Bedeutung gerade von naturwissenschaftlich-technischen Spitzenqualifikationen im globalen Technologie- und Innovationswettbewerb weiter zunimmt. Weltweit werden immer mehr Personen mit diesen Qualifikationen für Forschung und Entwicklung eingesetzt und auch der Anteil der Wissenschaftler(innen) (Researcher) am gesamten FuE-Personal ist seit Mitte der 1990er Jahre bis heute deutlich gestiegen.11 Deutschland hält sich mit fast 60 % (2010) etwas unterhalb des Durchschnitts der EU15-Länder (62 %) und hat auch beim Zuwachs eine ähnliche Dynamik an den Tag gelegt (Abb. 2.11). Die verfügbaren Zahlen in einem breiteren internationalen Vergleich deuten darauf hin, dass der Wissenschaftleranteil in FuE in Deutschland und den mittel- und südeuropäischen Ländern eher unterdurchschnittlich hoch ist. Die angelsächsischen und skandinavischen Länder, aber auch Überseestaaten wie vor allem Japan und Korea, setzen anteilig sehr viel mehr Wissenschaftler(innen) in FuE ein als Deutschland, Frankreich, Österreich oder die Schweiz.12


12 Für die USA liegen keine vergleichbaren Daten vor.
2.4 Voraussichtliche Entwicklung der Nachfrage nach Hochqualifizierten

2.4.1 Kernergebnisse vorliegender Projektionen

Im Rahmen einer Schwerpunktstudie wurden die vorliegenden Projektionen\textsuperscript{13} zur Entwicklung von Angebot und Nachfrage nach Qualifikationen und Tätigkeiten untersucht, um Gemeinsamkeiten und Unterschiede im Hinblick auf die Grundzüge der Entwicklung des Arbeitsmarktes für Hochqualifizier- te herauszuarbeiten.\textsuperscript{14} Ein wichtiges Ergebnis der betrachteten Studien ist, dass bei einer weiterhin steigenden Bildungs- und Erwerbsbeteiligung die zukünftige Qualifikationsnachfrage befriedigt bzw. übertroffen werden kann. Stagniert allerdings die Teilnahme an höheren Bildungsgängen und ist es nicht möglich, die Erwerbsneigung einzelner Bevölkerungsgruppen weiter zu steigern, wird das Angebot an Akademiker(inne)n nach einem zwischenzeitigen Maximum zwischen 2015 und 2020 wieder sinken und womöglich 2030 unter das heutige Niveau fallen. Hierbei ist allerdings auch zu berücksichtigen, dass die Szenarien zur voraussichtlichen Entwicklung des Angebots bis 2020 zwischen-


\textsuperscript{14} Cordes 2012. Die Annahmen, die den jeweiligen Projektionen zugrunde liegen, werden in der Schwerpunktstudie erläutert.
0,3 % und 13,9 % liegen und sich auch bei der Nachfrage in diesem Zeitfenster zwischen 4,9 % und 13,9 % bewegen und daher mit entsprechender Unsicherheit behaftet sind. Außerdem kann es in verschiedener Hinsicht zu einem Mismatch kommen, der den Ausgleich von Angebot und Nachfrage verhindert. Hierzu zählen regionaler Mismatch (insbesondere in weniger verdichteten Räume), überfachlicher Mismatch (z. B. hinsichtlich sozialer Kompetenzen) oder auch Sucharbeitslosigkeit.

Abb. 2.12: Entwicklung von Angebot und Nachfrage bei Personen mit Hochschulabschluss

Die Entwicklung des Arbeitsmarktes für Akademiker(innen) stellt sich in den ausgewerteten Studien wie folgt dar:

- Ausgehend von aktuell rund 7 Mio. erwerbstätigen Hochschulabsolvent(inn)en zeichnen sich zwischen den Projektionen zwei Entwicklungspfade ab (Abb. 2.12). Einerseits wird durch Prognos und BIBB/DEMOS eine Stagnation bzw. nur eine geringfügige Steigerung erwartet, d. h. das Angebot an Hochschulabsolvent(inn)en entspricht etwa dem Niveau von 2010. Ande-
Bildung, Qualifikation und technologische Leistungsfähigkeit


Abb. 2.13: Entwicklung von Angebot und Nachfrage in ausgewählten Tätigkeiten

Arbeitskräfteangebot (Erwerbspersonen, in 1.000 und 2010=100)

Arbeitskräftenachfrage (Erwerbstätige, in 1.000 und 2010=100)

Quelle: Projektionen, Berechnungen und Darstellung des NIW.

15 Das Fraunhofer-Institut für Angewandte Informationstechnik (FIT) hat zum einen zur Studie des IZA beigetragen (FIT-2007), zum anderen bildet es eine von zwei Angebotsprojektionen der Studie von BIBB/IAB (FIT-2010); bei der anderen Projektion im Rahmen dieser Studie handelt es sich um BIBB/DEMOS.
Im Bereich der MINT-Berufe bzw. Tätigkeiten „Forschen, Entwickeln, Konstruieren“ (FEK) kommen die Studien im Wesentlichen zu folgenden Ergebnissen:


- Die Nachfrage liegt bei den technisch-naturwissenschaftlichen Berufen mit 3,2 Mio. Erwerbstätigen um weniger als 400.000 unter dem Angebot. Bis 2020 steigt die Nachfrage dann auf 3,3 Mio., geht aber anschließend wieder leicht zurück. Während sich damit bis 2025 bei FIT-2010 der rechnerische Überschuss auf 196.000 halbiert, reduziert er sich nach dem BIBB/DEMOS-Modell auf 42.000. Die FEK-Tätigkeiten werden lt. Prognos dagegen insgesamt um 21,7 % stärker nachgefragt werden, bei den Hochqualifizierten in diesem Bereich sogar um 33,6 %.

Im internationalen Vergleich (Cedefop 2010) besonders auffällig ist der relativ hohe Ersatzbedarf in Deutschland, wie auch die nachstehenden Analysen zeigen. Die daraus resultierende Nachfrage(welle) ist insofern schwierig zu bewältigen, als die Berufserfahrung der aus dem Erwerbsleben Ausscheidenden kaum ersetzt werden kann. Hier wird es vor allem darauf ankommen, frühzeitig junge Hochschulabsolvent(inn)en einzustellen, um den notwendigen Wissenstransfer einzuleiten.

2.4.2 Ersatzbedarf in akademischen bzw. naturwissenschaftlich-technischen Berufen


In den akademischen Berufen insgesamt fallen 500.000 Erwerbstätige in der Gewerblichen Wirtschaft in diese Altersklasse, 16 fast 300.000 davon sind aktuell in den wissensintensiven Dienstleistungen tätig. In der Gewerblichen Wirtschaft insgesamt müssen damit 14,7 % der aktuell Erwerbstätigen ersetzt werden. Die nicht wissensintensiven Wirtschaftszweige sind davon etwas stärker betroffen als die wissensintensiven Wirtschaftszweige, deren größere Expansionsnachfrage in der Vergangenheit offenbar überwiegend über die Einstellung junger Absolvent(inn)en gedeckt wurde. Dennoch scheidet bis 2021 auch im wissensintensiven Verarbeitenden Gewerbe mindestens jeder Achte aus (12,5 %), in den wissensintensiven Dienstleistungen sogar 14,3 % der derzeitigen Erwerbstätigen.

Im internationalen Vergleich betrachtet betrachtet ist Deutschland – neben den Ländern Nordeuropas – am stärksten vom steigenden Ersatzbedarf betroffen. Am günstigsten stellt sich die Altersstruktur in dieser Hinsicht in der Ländergruppe Kerneuropa (12,7 %) sowie in Großbritannien (12,8 %) dar. In den wissensintensiven Industrien ist der Ersatzbedarf in Deutschland im europäischen Vergleich prozentual sogar am höchsten, auch im Bereich der wissensintensiven Dienstleistungen ist die Zahl der Erwerbstätigen im Alter von 55 bis 64 Jahren überdurchschnittlich (13,8 % in der EU-15).

---

16 In der nicht gewerblichen Wirtschaft sind sogar 520.000 Personen aktuell in diesem Alter.
Bildung, Qualifikation und technologische Leistungsfähigkeit

**Abb. 2.14:** Akademiker (ISCO 2) im Alter von 55 bis 64 Jahren absolut (in Tausend) und als Anteil an allen Beschäftigten (in Prozent)

<table>
<thead>
<tr>
<th>Sektor</th>
<th>DE</th>
<th>FR</th>
<th>UK</th>
<th>KERN</th>
<th>NORD</th>
<th>SÜD</th>
<th>EU-15</th>
<th>NMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissensintensives verarbeitendes Gewerbe</td>
<td>77</td>
<td>26</td>
<td>19</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>152</td>
<td>19</td>
</tr>
<tr>
<td>Nicht wissensintensives verarbeitendes Gewerbe</td>
<td>30</td>
<td>14</td>
<td>12</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Wissensintensives übriges produzierendes Gewerbe</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>Nicht wissensintensives übriges produzierendes Gewerbe</td>
<td>20</td>
<td>9</td>
<td>15</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>61</td>
<td>18</td>
</tr>
<tr>
<td>Wissensintensive Dienstleistungen</td>
<td>294</td>
<td>165</td>
<td>192</td>
<td>192</td>
<td>173</td>
<td>346</td>
<td>1.290</td>
<td>233</td>
</tr>
<tr>
<td>Nicht wissensintensive Dienstleistungen</td>
<td>77</td>
<td>35</td>
<td>32</td>
<td>26</td>
<td>21</td>
<td>32</td>
<td>213</td>
<td>46</td>
</tr>
<tr>
<td>Gewerbliche Wirtschaft</td>
<td>502</td>
<td>257</td>
<td>286</td>
<td>254</td>
<td>219</td>
<td>405</td>
<td>1.838</td>
<td>358</td>
</tr>
</tbody>
</table>

Quelle: Eurostat, Europäische Arbeitskräfteerhebung. - Berechnungen des NIW.

Bei den **Naturwissenschaftler(inne)n und Ingenieur(inn)en (ISCO 21)** sind bis 2021 mindestens 209.000 Erwerbstätige in der Gewerblichen Wirtschaft zu ersetzen, 78.000 davon in den wissensintensiven Dienstleistungen, 57.000 im wissensintensiven Verarbeitenden Gewerbe. Prozentual gesehen beträgt der Anteil der Personen in dieser Altersklasse 13,4 % – und ist damit noch höher als in allen anderen europäischen Vergleichsländern bzw. -regionen.

Besonders akut ist der Ersatzbedarf auch in diesen Berufen in den nicht wissensintensiven Wirtschaftszweigen, wo teilweise jede(r) Fünfte bis 2021 ausscheidet. In der wissensintensiven Industrie beträgt der Anteil der 55- bis unter 65-Jährigen 12,3 %, in den wissensintensiven Dienstleistungen 11,2 %. Dies ist im europäischen Vergleich erneut überdurchschnittlich hoch.

**Abb. 2.15:** Naturwissenschaftler und Ingenieure (ISCO 21) im Alter von 55 bis 64 Jahren absolut (in Tausend) und als Anteil an allen Beschäftigten (in Prozent)

<table>
<thead>
<tr>
<th>Sektor</th>
<th>DE</th>
<th>FR</th>
<th>UK</th>
<th>KERN</th>
<th>NORD</th>
<th>SÜD</th>
<th>EU-15</th>
<th>NMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissensintensives verarbeitendes Gewerbe</td>
<td>12,5</td>
<td>11,2</td>
<td>10,4</td>
<td>10,1</td>
<td>9,1</td>
<td>5,5</td>
<td>10,8</td>
<td>9,2</td>
</tr>
<tr>
<td>Nicht wissensintensives verarbeitendes Gewerbe</td>
<td>17,7</td>
<td>10,6</td>
<td>13,1</td>
<td>13,8</td>
<td>11,8</td>
<td>6,1</td>
<td>12,7</td>
<td>12,2</td>
</tr>
<tr>
<td>Wissensintensives übriges produzierendes Gewerbe</td>
<td>8,0</td>
<td>13,7</td>
<td>23,9</td>
<td>11,8</td>
<td>10,6</td>
<td>10,9</td>
<td>14,7</td>
<td>10,6</td>
</tr>
<tr>
<td>Nicht wissensintensives übriges produzierendes Gewerbe</td>
<td>17,4</td>
<td>11,4</td>
<td>14,1</td>
<td>16,4</td>
<td>15,2</td>
<td>7,4</td>
<td>13,9</td>
<td>8,7</td>
</tr>
<tr>
<td>Wissensintensive Dienstleistungen</td>
<td>14,3</td>
<td>14,6</td>
<td>12,8</td>
<td>13,3</td>
<td>15,6</td>
<td>13,6</td>
<td>13,8</td>
<td>11,1</td>
</tr>
<tr>
<td>Nicht wissensintensive Dienstleistungen</td>
<td>18,8</td>
<td>13,8</td>
<td>11,2</td>
<td>9,6</td>
<td>13,7</td>
<td>10,5</td>
<td>13,4</td>
<td>8,8</td>
</tr>
<tr>
<td>Gewerbliche Wirtschaft</td>
<td>14,7</td>
<td>13,6</td>
<td>12,8</td>
<td>12,7</td>
<td>14,6</td>
<td>12,5</td>
<td>13,4</td>
<td>10,5</td>
</tr>
</tbody>
</table>

Quelle: Eurostat, Europäische Arbeitskräfteerhebung. - Berechnungen des NIW.
3 Teilnahme an hochschulischer Bildung

Die Teilnahme an der Hochschulbildung wird durch institutionelle Rahmenbedingungen beeinflusst, auf die im Folgenden zunächst kurz eingegangen wird. Die in den letzten Jahren stark gestiegene Studiennachfrage und die Erwartung weiter steigender oder auf hohem Niveau stagnierender Studienanfängerzahlen haben insbesondere Finanzierungsfragen in den Vordergrund gerückt. Mit dem Hochschulpakt soll diesen Entwicklungen Rechnung getragen werden. Im Folgenden wird der aktuelle Stand dieses Programms resumiert, soweit Daten und Informationen dazu vorliegen.

3.1 Aktuelle und strukturelle Entwicklungen im Hochschulbereich


3.1.1 Die erste Programmphase 2007-2010


---

19 KMK 2005.
Bildung, Qualifikation und technologische Leistungsfähigkeit


3.1.2 Die zweite Programmphase 2011-2015


Stand der Umsetzung

Gemäß § 6 der Verwaltungsvereinbarung zur ersten Phase des Hochschulpakts berichten die Länder jeweils zum 31.10. über die Durchführung des Programms, die in ihrer Verantwortung liegt. Das Büro

20 S. Verwaltungsvereinbarung zwischen Bund und Ländern gemäß Artikel 91 b Abs. 1 Nr. 2 des Grundgesetzes über den Hochschulpakt 2020 (zweite Programmphase), Anlage.
21 Leszczensky/Frietsch/Gehrke/Helmrich 2010, S. 90.
23 Verwaltungsvereinbarung von Bund und Ländern gemäß Artikel 91b Absatz 1 Nummer 2 des Grundgesetzes über ein gemeinsames Programm für bessere Studienbedingungen und mehr Qualität in der Lehre, § 1.
Teilnahme an hochschulischer Bildung

der Gemeinsamen Wissenschaftskonferenz (GWK) von Bund und Ländern fasst die Berichte zu einem Gesamtbericht zusammen. Zuletzt ist 2011 der Monitoring-Bericht für das Jahr 2009 erschienen.\textsuperscript{25}

Der Hochschulpakt verfolgt verschiedene Schwerpunkte bei seiner Umsetzung:\textsuperscript{26}

- Erhöhung des Anteils der Studienanfängerplätze an Fachhochschulen
- Erhöhung des Anteils von Frauen bei der Besetzung von Professuren und sonstigen Stellen
- Schaffung zusätzlicher Stellen an den Hochschulen

Die bisher vorliegenden Berichte der Länder geben Auskunft darüber, inwiefern mit Blick auf das Globalziel einer Erhöhung der Studienplatzkapazitäten und die oben genannten Schwerpunkte bis einschließlich 2009 Fortschritte erzielt wurden.

- Mit Ende der ersten Paktphase sind bereits doppelt so viele zusätzliche Studienanfänger(innen) zu verzeichnen wie im Hochschulpakt vorgesehen (s. Abb. 3.1). Das angestrebte Globalziel wurde also nicht nur erreicht, sondern sogar deutlich überschritten. Dazu haben insbesondere auch die ostdeutschen Flächenländer und die Stadtstaaten beigetragen, die gemäß Hochschulpakt lediglich die Studienanfängerzahlen von 2005 zu halten hatten, aber bereits in den Jahren 2007 und 2008 mehr als 20.000 zusätzliche Studienanfängerplätze zu verzeichnen hatten. Im Falle der neuen Länder geschah dies, ohne dass sie an der Verteilung der Paktmittel für zusätzliche Studienanfänger(innen) teilnahmen.

\begin{table}[h]
\begin{center}
\begin{tabular}{|l|c|c|c|c|}
\hline
\hline
\textbf{Aufwuchspannung Hochschulpakt} & 12.820 & 24.480 & 26.920 & 27.150 & 91.370 \\
\textbf{Tatsächliche zusätzliche Studienanfänger gegen-über 2005} & 6.036 & 34.726 & 61.974 & 82.610 & 185.346 \\
\textbf{Umsetzung in \%} & 47 \% & 142 \% & 230 \% & 304 \% & 203 \% \\
\hline
\end{tabular}
\end{center}
\caption{Umsetzungsstand der ersten Säule des Hochschulpakts (Ausbau der Studienplatzkapazitäten) für die Jahre 2007 – 2010 (erste Programmphase)}
\end{table}

Quelle: GWK 2011, Tabelle 2; Stat. Bundesamt; eigene Berechnungen

- Der höchste Zuwachs entfällt an den Hochschulen 2009\textsuperscript{27} wie auch schon in den Vorjahren auf die Fächergruppen Rechts-, Wirtschafts- und Sozialwissenschaften (+28.336 Studienanfänger(innen) im Jahr 2009), Ingenieurwissenschaften (+17.285) und Mathematik/Naturwissenschaften (+6.339). Einen Rückgang verbucht die Fächergruppe Sport (-251).\textsuperscript{28}

- Wie in den Vorjahren entfällt auch 2009 mit 67 \% der überwiegende Anteil der zusätzlichen Studienanfänger(innen) auf die Fachhochschulen.

\textsuperscript{25} GWK 2011.

\textsuperscript{26} Art. 1, § 1, Abs. 4 der Verwaltungsvereinbarung zur ersten Paktphase. In der zweiten Paktphase kommen als weitere Schwerpunkte die Erhöhung des Anteils der Studienanfänger(innen) in den MINT-Fächern und die Ermöglichung eines qualitativ hochwertigen Studiums hinzu (Art. 1, § 1, Abs. 6 der Verwaltungsvereinbarung zur zweiten Paktphase).

\textsuperscript{27} GWK 2011, S. 7. Die folgenden tiefergehenden Analysen zur Umsetzung des Hochschulpakts liegen für das Jahr 2010 noch nicht vor.

• Der Frauenanteil bei den Professuren stieg von 14,3 % im Jahr 2005 auf 18,2 % im Jahr 2009. Die Länder führen dies auch auf Maßnahmen zurück, die im Rahmen des Hochschulpaktes ergriffen wurden.
• Der hauptberufliche wissenschaftliche Personalbestand (Vollzeitäquivalente) hat sich gegenüber dem Jahr 2005 um 16,7 %, derjenige der Lehrbeauftragten um 35,3 % erhöht. 2009 wurden u. a. durch Mittel aus dem Hochschulpakt rund 2.500 zusätzliche Stellen geschaffen.


Ausblick: Aufstockung nötig?

Die im Nationalen Bildungsbericht 2010 veröffentlichte Vorausberechnung der Studienanfängerzahlen bis zum Jahr 2025 zeigte bereits, dass die zu erwartende Entwicklung zu einem deutlich höheren Bedarf an zusätzlichen Studienanfängerplätzen führen könnte als im Rahmen des Hochschulpakts auf Basis der KMK-Prognose angenommen. Folgt man der Basisvariante der Bildungsberichts-Projektion, so würden bis 2015 Kapazitäten für weitere 64.000 Studienanfänger(innen) benötigt. In der oberen Variante der Projektion würde sich der Mehrbedarf im Vergleich zum Hochschulpakt auf 175.000 Studienanfängerplätze summieren. Das Centrum für Hochschulentwicklung (CHE) und das Forschungsinstitut für Bildungs- und Sozialökonomie (FiBS) erwarten sogar, dass bis Mitte des Jahrzehnts 500.000 zusätzliche Studienanfängerplätze im Vergleich zu 2005 benötigt werden. Bis zum Ende der Laufzeit des Hochschulpakts im Jahr 2020 rechnet das FiBS mit einer Million zusätzlich benötigter Studienanfängerplätze. Der Hochschulpakt müsste demnach nahezu vervierfacht werden. Auch die neue Prognose der KMK bestätigt diesen Trend tendenziell: Dort werden bis 2020 immerhin 750.000 zusätzliche Studienanfänger(innen) erwartet.


29 Berthold/Gabriel/Stuckrad 2009, Anhang.
33 KMK 2012.
34 Statistisches Bundesamt 2011.
Teilnahme an hochschulischer Bildung

infolgedessen intensiviert und wird vor dem Hintergrund der neuen KMK-Prognose sicher erneut Aufwind bekommen.

3.2 Entwicklung des Studierpotenzials aus dem allgemeinbildenden und beruflichen Schulsystem

Die Notwendigkeit, die Aufnahmekapazitäten der Hochschulen durch den Hochschulpakt zu stimulieren, hängt mit zwei Faktoren zusammen: der steigenden Zahl von Studienberechtigten, die das allgemeinbildende und berufliche Schulwesen verlassen, und der wieder wachsenden Neigung, die Option auf eine Studienaufnahme tatsächlich einzulösen und ein Studium zu beginnen (vgl. dazu unten Abschnitt 3.3).

Im Zeitraum zwischen 1992 und 2010 stieg die Gesamtzahl der jährlichen studienberechtigten Schulabgänger(innen) von allgemeinbildenden und beruflichen Schulen nahezu kontinuierlich von 290.600 auf zuletzt 456.600 an, also um 57 % (vgl. Abb. 3.2). Es kann insofern von einer erheblichen Ausweitung des Potenzials für eine Hochschulausbildung gesprochen werden. Zumindest das quantitative Angebot an Studienberechtigten stellt derzeit somit kaum einen Engpass für den gewünschten Ausbau von ingenieur- und naturwissenschaftlichen Qualifikationen dar. Bis 2013 ist nach der aktuellen Prognose der Kultusministerkonferenz aufgrund der doppelten Abiturjahrgänge nochmals mit einer stark steigenden Zahl an Studienberechtigten zu rechnen, die im Jahr 2013, wenn in Nordrhein-Westfalen der doppelte Jahrgang die Schulen verlässt, auf fast 520.000 Studienberechtigte steigen wird. Ab 2014 wird die Zahl der Studienberechtigten sinken, aber bis 2025 immer noch deutlich über 400.000, und damit etwa auf dem Niveau von 2006, liegen.

Abb. 3.2: Studienberechtigte in Deutschland 1992 - 2025 in Tsd., ab 2011 Projektion


35 KMK 2011b.
Insgesamt wird die Zahl der Schulabgänger(innen) in Deutschland bis 2025 auf etwa 725.000 sinken (-18,3 % gegenüber 2009). Bei der vorausberechnet hohen Zahl an Studienberechtigten kann es deshalb zwischen der beruflichen Ausbildung und den Hochschulen zu verstärkter Konkurrenz um die Absolvent(innen) des allgemeinbildenden Schulsystems kommen. Angesichts der demografischen Entwicklung erscheint es daher auch dringlich, die für 2025 prognostizierte Zahl von 44.700 Abgänger(innen) ohne Hauptschulabschluss möglic hst zu unterschreiten. Selbst wenn ein Teil von ihnen den Hauptschulabschluss zu einem späteren Zeitpunkt nachholt, erleichtert ein bereits in der Schule erworbener Abschluss (und ein entsprechender Kompetenzstand) den Übergang in die berufliche Bildung.


Neben den allgemeinbildenden Schulen hat das berufliche Schulwesen eine quantitativ bedeutende Rolle als vorbereitende Instanz für die akademische Qualifizierung erlangt. In der Regel sind es Abgänger(innen) des allgemeinbildenden Schulwesens mit einem mittleren Abschluss, die nach oder mit erfolgreichem Durchlaufen des Bereichs der beruflichen Bildung (auch) einen zum Hochschulstudium berechtigenden schulischen Abschluss erwerben. 2010 kamen auf diesem Wege aus dem beruflichen Schulwesen insgesamt 175.100 Studienberechtigte. Diese Zahl wird nach den KMK-Prognosen nicht weiter steigen und 2025 bei 148.000 liegen. Damit sinkt auch der in den letzten Jahren auf 38 % gestiegene Anteil der Studienberechtigten aus beruflichen Schulen wieder etwas ab.


Die hauptsächliche Ursache für den erheblichen Anstieg der Studienberechtigtenzahl liegt in der wachsenden Beteiligung der altersgleichen Bevölkerung an zur Hochschulreife führender Schulbildung (einschl. beruflicher Bildung). Dieser Anteil wird durch die Studienberechtigtenquote beschrieben, die von 30,8 % im Jahr 1992 auf 48,4 % im Jahr 2010 angestiegen ist.

36 Nicht berücksichtigt sind hier die Abgänger(innen), die auch nach dem Abschluss einer Fachschule nicht über eine schulische Studienberechtigung verfügen, nach dem KMK-Beschluss, z. B. als Meister, jedoch eine Studienberechtigung zu erkannt bekommen.
37 Sogenannte nicht-traditionelle, d. h. vom Schulwesen unabhängige Zugangswege fallen in Deutschland bislang quantitativ kaum ins Gewicht; siehe hierzu Abschnitt 3.3.2.
38 Bei den Anfänger(inne)n in Fachschulen verfügte im Schuljahr 2010/11 etwa jede(r) Fünfte über eine Fachhochschulreife oder eine allgemeine Hochschulreife.
**Studienberechtigtenquote**


Die in Abb. 3.2 dargestellte Entwicklung seit Beginn der 1990er Jahre ist Teil eines langfristigen, bereits in den 1950er und 1960er Jahren einsetzenden Trends eines steigenden anteiligen Erwerbs der Hochschulreife.\(^{39}\) Nach der aktuellen KMK-Prognose wird dieser Trend weiter anhalten, nicht zuletzt aufgrund der doppelten Abiturjahrgänge, sich aber ab 2014 auf dem vergleichsweise hohen Niveau von etwa 57 % stabilisieren (s. Abb. 3.3). Damit läge der Wert etwa auf dem Niveau des gegenwärtigen OECD-Mittels, aber unter dem wichtiger OECD-Referenzländer (vgl. Abb. 3.5).

Abb. 3.3: Studienberechtigtenquoten in Deutschland: Anteil der Schulabgänger(innen) mit Hochschulreife an der altersgleichen Bevölkerung 1992 bis 2025 insgesamt und nach Geschlecht in Prozent, ab 2011 Projektion


Zu der in den letzten Jahrzehnten zu beobachtenden Vervielfachung der Studienberechtigtenquote haben zwei Entwicklungen besonders beigetragen:

Bildung, Qualifikation und technologische Leistungsfähigkeit

- Zum einen ist die mit der Einrichtung von Fachhochschulen verbundene Einführung der Fachhochschulreife zu nennen, die primär an Fachoberschulen, in den letzten Jahren zunehmend aber auch an anderen beruflichen Schulen im Zusammenhang mit dem Absolvieren einer schulischen Berufsausbildung oder beruflichen Fortbildung erworben wird (Berufsfachschulen und Fachschulen). Die Gruppe der Studienberechtigten mit Fachhochschulreife ist für die hier behandelte Thematik von besonderem Interesse, weil sie das zentrale Rekrutierungspotenzial für die Ingenieurwissenschaften bildet.  

- Zum anderen ist die Beteiligung junger Frauen an höherer Schulbildung überproportional gestiegen, so dass sich bereits auf der Vorstufe der Bildung von akademischem Humankapital der Trend einer zunehmenden „Feminisierung“ abzeichnet. Die Studienberechtigtenquote junger Frauen wuchs im Zeitraum von 1960 bis 2010 um mehr als das Fünffache (auf 53,0 %), die der Männer dagegen nur um gut das Dreifache (auf 45,0 %). Als Folge der geschlechtsspezifisch unterschiedlichen Dynamik der schulischen Bildungsbeteiligung stieg der Anteil der Frauen an allen studienberechtigten Schulabgänger(inne)n von 39,4 % (1970) auf 53 % und verharrt seit 2000 bei diesem Anteilswert.

Zwar wird das Gesamtpotenzial für die Bildung von akademischem Humankapital größer, aber mit seiner steigenden Feminisierung wächst das Potenzial für die MINT-Studiengänge nicht in gleichem Maße; zum einen, weil sich junge Frauen bisher seltener als männliche Studienberechtigte für ein Hochschulstudium entscheiden (s. u.), zum anderen wegen der vermutlich auch zukünftig nur vergleichsweise geringen Präferenzen von Frauen für eine Reihe der für die technologische Leistungsfähigkeit besonders relevanten Studiengängen.


40 Der Anteil der Studienberechtigten mit Fachhochschulreife an der altersgleichen Bevölkerung stieg zwischen 1980 und 2010 um mehr als das Zweiseitahafache von 5,3 % auf gegenwärtig 15 %. Nach der o. g. Vorausberechnung wird sich diese Quote in den nächsten eineinhalb Jahrzehnten aber nur noch wenig erhöhen und im Jahr 2025 zwischen 15 % und 16 % liegen.


Teilnahme an hochschulischer Bildung

Studienberechtigten aus allgemeinbildenden Schulen, die einen Leistungskurs (bzw. Unterricht mit erhöhtem Anforderungsniveau) in Physik besucht haben, beinahe unverändert bei 11 % bis 12 %.

Abb. 3.4: Studienberechtigte aus allgemeinbildenden Schulen mit Besuch ausgewählter Leistungskurse* 1980 bis 2010 in Prozent

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>27</td>
<td>14</td>
<td>11</td>
<td>33</td>
<td>28</td>
<td>18</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>1994</td>
<td>33</td>
<td>11</td>
<td>10</td>
<td>27</td>
<td>36</td>
<td>25</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2002</td>
<td>33</td>
<td>11</td>
<td>8</td>
<td>25</td>
<td>33</td>
<td>8</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>2006</td>
<td>42</td>
<td>11</td>
<td>8</td>
<td>23</td>
<td>33</td>
<td>41</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>2010</td>
<td>41</td>
<td>12</td>
<td>8</td>
<td>23</td>
<td>38</td>
<td>37</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

Quelle: HIS-HF-Studienberechtigtenpanel


Im internationalen Vergleich hat Deutschland – bezogen auf die Bildungsstufe ISCED 3A: Bildungsgänge des Sekundarbereichs II, die direkten Zugang zum Tertiärbereich A eröffnen – unter den ausgewiesenen OECD-Staaten zu allen Zeitpunkten mit Abstand die geringste Abschlussquote im Sekundarbereich II (s. Abb. 3.5). Vom aktuellen OECD-Durchschnittswert für den Weg über ISCED 3A (61 %) ist Deutschland mit einem 2009 wieder gesunkenen Anteilswert von 39 % weit entfernt. Bezogen auf die Bildungsstufe ISCED 4A, also Bildungsgänge des postsekundären nicht-tertiären Bereichs, die gleichfalls einen direkten Zugang zum Tertiärbereich A eröffnen (Abendgymnasien und Kollegs, einjährige Fachoberschulen und Berufsoberschulen), nimmt Deutschland dagegen eine Ausnahmestellung ein (2009: 15,1 %, OECD-Mittel: 2,9 %). Diese Bildungsstufe ist nach 2004 (mit Ausnahme von Frankreich auf freilich sehr niedrigem Niveau) in keinem anderen der hier aufgeführten Vergleichsländer mehr anzutreffen. Auch zusammengenommen bleibt der Wert für Deutschland (54,1 %) unter dem OECD-Mittel. Anderen Ländern gelingt es insgesamt nach wie vor in erheblich höherem Maße, die Potenziale für eine Hochschulausbildung zu mobilisieren und damit auch die Basis für mögliche technisch-naturwissenschaftlich orientierte Studienentscheidungen erheblich breiter anzulegen (vgl. auch Kap. 2.3.1).

43 Vgl. ausführlich zu früheren Zeitpunkten Leszczenky/Gehrke/Helmrich 2011.

Abb. 3.5: Abschlussquoten im Sekundarbereich II (ISCED 3A) und im postsekundaren nicht-tertiären Bereich (ISCED 4A) in ausgewählten OECD-Ländern 1998-2009 in Prozent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>67</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>69</td>
<td>70</td>
<td>70</td>
<td>68</td>
<td>68</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>Kanada</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>77</td>
<td>76</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>Finnland</td>
<td>89</td>
<td>87</td>
<td>91</td>
<td>85</td>
<td>84</td>
<td>90</td>
<td>95</td>
<td>95</td>
<td>97</td>
<td>93</td>
<td>95</td>
</tr>
<tr>
<td>Frankreich</td>
<td>54</td>
<td>0,3</td>
<td>49</td>
<td>0,7</td>
<td>51</td>
<td>0,7</td>
<td>52</td>
<td>0,6</td>
<td>-</td>
<td>51</td>
<td>0,7</td>
</tr>
<tr>
<td>Deutschland</td>
<td>34</td>
<td>10,2</td>
<td>33</td>
<td>9,3</td>
<td>32</td>
<td>9,5</td>
<td>34</td>
<td>8,6</td>
<td>35</td>
<td>9,0</td>
<td>37</td>
</tr>
<tr>
<td>Italien</td>
<td>67</td>
<td>-</td>
<td>74</td>
<td>-</td>
<td>69</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>76</td>
</tr>
<tr>
<td>Japan</td>
<td>70</td>
<td>-</td>
<td>69</td>
<td>-</td>
<td>69</td>
<td>-</td>
<td>68</td>
<td>-</td>
<td>67</td>
<td>-</td>
<td>69</td>
</tr>
<tr>
<td>Korea</td>
<td>53</td>
<td>60</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>64</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>66</td>
<td>-</td>
</tr>
<tr>
<td>Niederlande</td>
<td>87</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>62</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>66</td>
</tr>
<tr>
<td>Spanien</td>
<td>43</td>
<td>15,3</td>
<td>46</td>
<td>9,5</td>
<td>47</td>
<td>5,4</td>
<td>48</td>
<td>3,8</td>
<td>46</td>
<td>45</td>
<td>44</td>
</tr>
<tr>
<td>Schweden</td>
<td>79</td>
<td>-</td>
<td>74</td>
<td>-</td>
<td>71</td>
<td>-</td>
<td>72</td>
<td>-</td>
<td>75</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>Schweiz</td>
<td>23</td>
<td>2,4</td>
<td>23</td>
<td>1,2</td>
<td>19</td>
<td>3,0</td>
<td>25</td>
<td>2,9</td>
<td>28</td>
<td>3,3</td>
<td>30</td>
</tr>
<tr>
<td>Vereinigte</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>73</td>
<td>-</td>
<td>73</td>
<td>-</td>
<td>75</td>
</tr>
<tr>
<td>Staaten</td>
<td>-</td>
</tr>
<tr>
<td>OECD-Mittel</td>
<td>57</td>
<td>3,6</td>
<td>55</td>
<td>2,3</td>
<td>54</td>
<td>3,0</td>
<td>61</td>
<td>5,2</td>
<td>56</td>
<td>3,5</td>
<td>61</td>
</tr>
</tbody>
</table>

1) ISCED 3A: Bildungsgänge des Sekundarbereichs II, der direkten Zugang zum Tertiärbereich A eröffnen
2) ISCED 4A: Bildungsgänge des postsekundären nicht-tertiären Bereichs, der direkten Zugang zum Tertiärbereich A eröffnen

Quelle: OECD (Hrsg.): Bildung auf einen Blick – OECD-Indikatoren, verschiedene Jahrgänge, Paris, Recherche in der OECD: Education Database

3.3 Übergang in die Hochschule und Entwicklung der Studienachfrage

3.3.1 Übergang von der Schule zur Hochschule

Abb. 3.6: Studierquoten oder Übergangsquoten in die Hochschulen 1980 bis 2010 in Prozent


Nach den Ergebnissen der Befragung der Studienberechtigten 2010 bleibt die Kernquote stabil bei 71 %, während die Maximalquote bei 78 % liegt. Höhe und Entwicklung der Übergangsquoten unterscheiden sich für verschiedene Gruppen von Studienberechtigten jedoch teilweise erheblich voneinander:

- Studienberechtigte Frauen nehmen traditionell seltener ein Studium auf als Männer. So ergibt sich für den Jahrgang 2010 für Frauen eine Bandbreite der Studierquote von minimal 67 % und maximal 74 %, für Männer dagegen ein Korridor von 76 % bis 82 %. Dieser Befund ist hinsichtlich der angestrebten Erhöhung von akademischen Humanressourcen von besonderem Interesse, weil der Anteil der Frauen unter den Studienberechtigten, besonders unter denen mit

allgemeiner Hochschulreife, gestiegen ist und wie oben gezeigt, die deutliche Mehrheit der Studienberechtigten stellen.


- Dauerhaft deutliche Unterschiede in der Realisierung zeigen sich auch, wenn nach der Bildungsherkunft differenziert wird. Unterschieden danach, ob zumindest ein Elternteil über einen Hochschulabschluss verfügt, ergibt sich für den Studienberechtigtenjahrgang 2010 folgender Befund: Während die Studierquote von Studienberechtigten mit akademischem familiären Hintergrund minimal bei 76 % und maximal bei 82 % liegt, beträgt die Bandbreite für Studienberechtigte ohne diesen familiären Hintergrund minimal 61 % bis 68 %, 47

### 3.3.2 Berufliche (Weiter-)Bildung und Hochschulstudium

Der Zugang zum Hochschulstudium ist immer noch ganz überwiegend von dem Erwerb einer schulischen Studienberechtigung abhängig. Die sich verändernden demografischen Rahmenbedingungen, der erhöhte Bedarf an hochqualifizierten Fachkräften bzw. die Suche nach neuen Rekrutierungspotenzialen lenken den Blick jedoch vermehrt auf den Übergang bzw. die Durchlässigkeit zwischen beruflicher (Weiter-)Bildung und Hochschule – insbesondere für qualifizierte Berufstätige, die nicht über eine schulische Hochschulzugangsberechtigung verfügen. Zu unterscheiden ist zwischen:

- Schulischen Angeboten, die in erster Linie der beruflichen Aus-, Fort- und Weiterbildung dienen, zugleich aber auch die Hochschulreife vermitteln (Berufsfachschule, Fachschule, Fachakademie),

- Schulischen Angeboten für Berufstätige zum gezielten Erwerb der Hochschulreife über den sog. Zweiten Bildungsweg (Abendgymnasium, Kolleg) sowie


Die Regelungen für die zuletzt genannte Gruppe sollen auf der Grundlage des KMK-Beschlusses vom März 2009 zukünftig einheitlich gestaltet werden. Wichtigste Änderung im Vergleich zu bisherigen Regelungen ist, dass die Absolvent(inn)en bundesrechtlich geregelter und gleichgestellter beruflicher Fortbildungen die allgemeine Hochschulzugangsberechtigung erhalten und sich somit für eine Zulassung in allen Fächern an Universitäten und allen anderen Hochschulen bewerben können. 48 Hinzu kommt, dass beruflich qualifizierte Bewerber(innen) dann eine fachgebundene Hochschulzugangsbe rechtigung erhalten, wenn sie eine nach Bundes- oder Landesrecht geregelte mindestens zweijährige Berufsausbildung in einem zum angestrebten Studiengang affinen Bereich und (in einigen Ländern) eine mindestens dreijährige Berufspraxis in einem zum Studiengang affinen Bereich sowie ein Eignungsfeststellungsverfahren erfolgreich durchlaufen haben. 49 Inzwischen haben 15 Länder die Regelungen des KMK-Beschlusses umgesetzt, in Sachsen ist dies geplant. 50

Wie die Abb. 3.7 zeigt, wird der Weg an die Universitäten und Fachhochschulen nach wie vor von den auf traditionelle Weise schulisch erworbenen Studienberechtigungen dominiert. Der Zugang bzw. die Zulassung an die Hochschulen über den Zweiten oder Dritten Bildungsweg spielt bislang mit insge-

---

47 Auswertungen des HIS-HF-Studienberechtigtenpanels 2010.
48 KMK 2009.
49 Ibid.
50 KMK 2011a.
samt 5,8 % (2010) nur eine marginale Rolle. Dies gilt insbesondere für die Universitäten und gleichgestellte Hochschulen (4,0 %); deutlich häufiger sind diese Zugangswegs dagegen unter den Studienanfänger(innen) der Fachhochschulen zu finden (8,7 %). Insbesondere der Dritte Bildungsweg über eine berufliche Qualifizierung wird bislang nur selten genutzt, auch wenn dieser Zugangsweg 2010 etwas an Bedeutung gewonnen hat (2,1%). Ob sich diese Entwicklung durch die Öffnung des Hochschulzugangs für beruflich Qualifizierte 2011 fortsetzen wird, ist noch offen.

Abb. 3.7: Deutsche Studienanfänger(innen) insgesamt und an Universitäten und Fachhochschulen im Wintersemester 2000, 2005, 2009 und 2010 nach Wegen des Erwerbs der Studienberechtigung in Prozent

<table>
<thead>
<tr>
<th>Hochschulzugangsberechtigung über</th>
<th>Insgesamt</th>
<th>Universitäten</th>
<th>Fachhochschulen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gymnasium, Fachgymnasium, Gesamtschule</td>
<td>81,6</td>
<td>76,9</td>
<td>76,9</td>
</tr>
<tr>
<td>Berufliche Schulen1)</td>
<td>12,6</td>
<td>16,6</td>
<td>15,2</td>
</tr>
<tr>
<td>Zweiter Bildungsweg</td>
<td>2,6</td>
<td>3,3</td>
<td>3,4</td>
</tr>
<tr>
<td>Dritter Bildungsweg</td>
<td>0,7</td>
<td>1,0</td>
<td>1,4</td>
</tr>
<tr>
<td>Sonstige2)</td>
<td>2,6</td>
<td>2,2</td>
<td>3,0</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>100,0</td>
<td>100,0</td>
<td>100,0</td>
</tr>
</tbody>
</table>

1) Berufliche Schulen: Fachoberschule, Berufsfachschulen, Fachschulen und Fachakademien
2) Sonstige: Eignungsprüfung Musik/Kunst, ausländische HZB, sonstige HZB, o. A.
Quelle: Statistisches Bundesamt, Hochschulstatistik


Da Studierende mit Berufsabschluss sich durch überdurchschnittliche Motivation und Erfolgsoorientierung auszeichnen, kann davon ausgegangen werden, dass sich durch eine steigende Zahl von beruflich qualifizierten Studierenden auch die Absolventenquote positiv entwickeln würde. Um die Durchlässigkeit innerhalb des Bildungssystems bzw. die Übergänge von der beruflichen zur akademischen Bildung spürbar zu verbessern, bedarf es jedoch veränderter Studienorganisationsmodelle, die den Bedürfnissen von studierenden Beschäftigten stärker entsprechen.

3.3.3 Entwicklung der Zahl der Studienanfänger(innen)

Höhe und Entwicklung der jährlichen Studienanfängerzahlen hängen von der Zahl der formal Studienberechtigten und deren Entscheidung ab, tatsächlich ein Studium aufzunehmen (Studierquote). Bei der Analyse der Entwicklung der Studienanfängerzahlen sind zudem die Zu wanderungen ausländischer Studienanfänger(innen) (sogenannter Bildungsausländer(innen)) zu berücksichtigen.

**Anzahl der jährlichen Studienanfänger(innen)**

Der Indikator „Anzahl der jährlichen Studienanfänger“ ist der jeweils aktuelle Gradmesser für den Umfang der „neuen“ individuellen Investitionen in eine hochschulische Ausbildung; die Studienanfängerquote steht in volkswirtschaftlicher Perspektive für das Ausmaß der Ausschöpfung des demografischen Potenzials für die Bildung von akademischem Humankapital.

Abb. 3.8: Studienanfänger(innen) in Deutschland im 1. Hochschulsemester der Studienjahre 1992 – 2025 in abs. Zahlen, ab 2012 Projektion

---

**Anmerkungen:**

1) 2011: vorläufige Zahl; einschl. Verwaltungsfachhochschulen


Hinsichtlich der Steigerung der Studienanfängerzahlen seit 2008 ist allerdings zu beachten, dass (1) ein nennenswerter Anteil dieser Steigerung (etwa 8.500) auf die Umwandlung der Berufskademien in Baden-Württemberg in die Duale Hochschule Baden-Württemberg (mit dem formalen Status einer Fachhochschule) und damit auf die Einbeziehung dieser Studienanfänger(innen) in die Amtliche Hochschulstatistik zurückzuführen ist; dass (2) die ersten doppelten Abiturientenjahrgänge die allgemeinbildenden Schulen verlassen haben (2007: Sachsen-Anhalt, 2008: Mecklenburg-
Teilnahme an hochschulischer Bildung


Für die nächsten Jahre wird übereinstimmend davon ausgegangen, dass die jährliche Studienanfängerzahl wegen der stärkeren Bildungsbeteiligung (weiter steigende Studienberechtigtenquoten, verbreiteter Zugang zur Hochschule), aber auch wegen der doppelten Abiturientenjahrgänge in einigen bevölkerungsstarken Bundesländern weiterhin hoch bleiben wird. Die aktuelle Vorausberechnung der KMK ergibt, dass die Studienanfängerzahl erstmals 2021 wieder knapp unter das hohe Niveau des Jahres 2010 sinken wird.


### Studienanfängerquote

Die Studienanfängerquote misst den jeweiligen Anteil der Studienanfänger(innen) an der Bevölkerung des entsprechenden Alters. Hierzu werden Quoten für einzelne Altersjahrgänge berechnet und anschließend aufsummiert (sog. Quotensummenverfahren). In diesem Abschnitt werden neben der Gesamt-Quote für deutsche und ausländische Studienanfänger(innen) auch die nur für Deutsche sowie die Quote für deutsche und bildungsinländische Studienanfänger(innen) ausgewiesen.

Abb. 3.9: Studienanfängerquoten in Deutschland 1993 – 2011 insgesamt in Prozent

![Studienanfängerquoten in Deutschland 1993 – 2011 insgesamt in Prozent](image)

Quellen: Statistisches Bundesamt (Hrsg.): Nichtmonetäre hochschulstatistische Kennzahlen, verschiedene Jahrgänge, a. a. O.

---

52 Vgl. dazu auch Kap. 3.1.
Bezieht man die Studienanfängerquote nur auf deutsche Studienanfänger(innen), stieg dieser Indikator für die Beteiligung an Hochschulabsolventen zwischen 1995 und 2010 um insgesamt 14,3 Prozentpunkte von 27,3 % auf 41,6 %; berücksichtigt man aber die sog. Bildungsinländer, liegt die Studienanfängerquote für 2010 indes nur bei 38,1 %. Schließt man aber die sog. Bildungsausländer in die Betrachtung ein, ist in dem genannten Zeitraum ein Aufwuchs um 18,4 Prozentpunkte von 26,8 % auf 45,2 % im Studienjahr 2010 zu beobachten (s. Abb. 3.9). Mit der stark gestiegenen Studienanfängerzahl 2011 wird sich diese Quote auf über 55 % erhöhen.

Die Differenzen zwischen den verschiedenen Erstsemesterquoten unterstreichen die große Bedeutung, die bildungsausländische Studienanfänger(innen) für das deutsche Hochschulsystem und damit potenziell für die Verfügung über hochqualifiziertes Humankapital in Deutschland haben. Es wird aber auch deutlich, dass die engere, nur Deutsche und Bildungsinländer umfassende Studienanfängerquote das vom Wissenschaftsrat definierte Ziel einer Studienanfängerquote von „mindestens 40 %“ trotz der Zuwächse in den letzten Jahren immer noch nicht erreicht hat. Gleichzeitig macht diese Studienanfängerquote indirekt auf die bislang relativ geringe bzw. gegenüber der deutschen Bevölkerung unterproportionale Beteiligung von Bildungsinländern an hochschulischer Bildung aufmerksam.


Teilnahme an hochschulischer Bildung

In einigen der Vergleichsländer sind die Studienanfängerquoten allerdings in erheblichem Maße durch internationale Studierende beeinflusst (im deutschen Sprachgebrauch: Bildungsausländer). Insbesondere für Australien und Großbritannien, aber auch für Schweden, liegt die um diesen Effekt bereinigte Quote auf oder sogar unter dem OECD-Mittel. Auch in weiteren Ländern, die in der Tabelle nicht aufgeführt sind, differieren die bereinigte und die unbereinigte Quote um mehr als zehn Prozentpunkte (Österreich, Island, Neuseeland, Norwegen, Schweiz). Für Deutschland sinkt die bereinigte Quote um sechs Prozentpunkte und liegt auch damit auf dem niedrigsten Niveau der Vergleichsländer.


Abb. 3.10: Studienanfängerquote: Anteil der Studienanfänger(innen) an der alterstypischen Bevölkerung in ausgewählten OECD-Ländern 1998 – 2009 in Prozent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>53</td>
<td>65</td>
<td>77</td>
<td>68</td>
<td>70</td>
<td>82</td>
<td>84</td>
<td>86</td>
<td>87</td>
<td>94</td>
</tr>
<tr>
<td>Finnland</td>
<td>58</td>
<td>72</td>
<td>71</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>71</td>
<td>70</td>
<td>69</td>
</tr>
<tr>
<td>Frankreich</td>
<td>37</td>
<td>37</td>
<td>39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Deutschland</td>
<td>28</td>
<td>32</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>Italien</td>
<td>42</td>
<td>44</td>
<td>50</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>55</td>
<td>53</td>
<td>51</td>
<td>50</td>
</tr>
<tr>
<td>Japan</td>
<td>36</td>
<td>37</td>
<td>39</td>
<td>40</td>
<td>40</td>
<td>41</td>
<td>45</td>
<td>46</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>Korea</td>
<td>49</td>
<td>-</td>
<td>47</td>
<td>49</td>
<td>54</td>
<td>59</td>
<td>61</td>
<td>71</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niederlande</td>
<td>52</td>
<td>54</td>
<td>54</td>
<td>52</td>
<td>56</td>
<td>59</td>
<td>58</td>
<td>60</td>
<td>62</td>
<td>63</td>
</tr>
<tr>
<td>Schweiz</td>
<td>33</td>
<td>-</td>
<td>38</td>
<td>38</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spanien</td>
<td>41</td>
<td>47</td>
<td>49</td>
<td>46</td>
<td>44</td>
<td>43</td>
<td>43</td>
<td>41</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>Schweden</td>
<td>59</td>
<td>69</td>
<td>75</td>
<td>80</td>
<td>79</td>
<td>76</td>
<td>76</td>
<td>73</td>
<td>65</td>
<td>68</td>
</tr>
<tr>
<td>Vereinigtes Königreich</td>
<td>48</td>
<td>46</td>
<td>48</td>
<td>48</td>
<td>52</td>
<td>51</td>
<td>57</td>
<td>55</td>
<td>57</td>
<td>61</td>
</tr>
<tr>
<td>Vereinigte Staaten</td>
<td>44</td>
<td>42</td>
<td>64</td>
<td>63</td>
<td>63</td>
<td>64</td>
<td>64</td>
<td>65</td>
<td>64</td>
<td>70</td>
</tr>
<tr>
<td>Ländermittel</td>
<td>40</td>
<td>48</td>
<td>52</td>
<td>53</td>
<td>53</td>
<td>54</td>
<td>56</td>
<td>56</td>
<td>56</td>
<td>59</td>
</tr>
</tbody>
</table>

* Summe der Netto-Studienanfängerquoten für jeden einzelnen Altersjahrgang

1) Angaben in Klammern: Bereinigte Quoten ohne Berücksichtigung internationaler Studierender

Quellen: OECD (Hrsg.): Bildung auf einen Blick – OECD-Indikatoren, div. Jahrgänge, a. a. O.

3.4 Studienanfänger(innen) in den MINT-Studiengängen

Für die Ausbildung von Fachkräften in den akademischen MINT-Berufen ist die Wahl eines entsprechenden Studienfachs der erste Schritt. Die Studienfachwahl wird von verschiedenen Faktoren beeinflusst. Auf die Bedeutung der fachlichen Schwerpunktssetzung in der Schule wurde bereits eingegangen (vgl. Kapitel 3.2). Verschiedene Studien untersuchen weitere Einflussfaktoren auf die Studienentscheidung und die Frage, was zu einem erfolgreichen Studienverlauf in den MINT-Fächern beiträgt.

54 Vgl. z. B. Heine/Egeln/Kerst/Müller/Park 2006, Solga/Pfahl 2009; acatech/VDI 2009.
55 Lörz/Egeln/Peters/Heine 2011 (im Erscheinen).
Für alle Fächergruppen sowie für ausgewählte Studienbereiche der beiden Fächergruppen Mathematik/Naturwissenschaften und Ingenieurwissenschaften werden in Abb. 3.11 die Fächerstrukturquoten der Studienanfänger(innen) von 1992 bis 201056 dargestellt. Insgesamt zeigt sich im langjährigen Zeitverlauf eine relativ stabile Fächerstruktur an deutschen Hochschulen.

**Fächerstrukturquote**

Die Fächerstrukturquote gibt den jeweiligen Anteil der Studienanfänger(innen) einer Fächergruppe bzw. eines Studienbereichs an allen Studienanfänger(innen) an, eliminiert also die Einflüsse, die aus der veränderten Gesamtzahl der Studienanfänger(innen) resultieren, und kann deshalb als Indikator für die relative Attraktivität einer Fächergruppe und deren Verschiebungen fungieren.


**Abb. 3.11:** Fächerstrukturquoten nach Fächergruppen und ausgewählten Studienbereichen der MINT-Fächer 1992 – 2010 in Prozent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprach- und Kulturwiss., Sport, Rechts-, Wirtschafts- und Sozialwiss.</td>
<td>19,9</td>
<td>22,7</td>
<td>20,9</td>
<td>21,9</td>
<td>21,5</td>
<td>21,4</td>
<td>20,9</td>
<td>20,7</td>
<td>19,9</td>
<td>17,8</td>
<td>18,0</td>
<td>18,2</td>
</tr>
<tr>
<td>Humanmedizin, Veterinärmedizin, Agrar-, Forst- und Ernährungswiss.</td>
<td>33,3</td>
<td>35,3</td>
<td>34,0</td>
<td>34,4</td>
<td>33,2</td>
<td>32,1</td>
<td>32,0</td>
<td>32,5</td>
<td>33,1</td>
<td>35,2</td>
<td>34,4</td>
<td>33,4</td>
</tr>
<tr>
<td>Kunst, Kunstwissenschaften</td>
<td>4,4</td>
<td>4,6</td>
<td>4,0</td>
<td>3,7</td>
<td>3,5</td>
<td>4,3</td>
<td>4,6</td>
<td>4,9</td>
<td>4,7</td>
<td>4,9</td>
<td>4,7</td>
<td>4,7</td>
</tr>
<tr>
<td>Mathematik, Naturwissenschaften</td>
<td>2,3</td>
<td>2,4</td>
<td>2,0</td>
<td>2,0</td>
<td>2,1</td>
<td>2,2</td>
<td>2,2</td>
<td>2,2</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
<td>2,1</td>
</tr>
<tr>
<td>Biologie</td>
<td>2,8</td>
<td>3,7</td>
<td>3,5</td>
<td>3,4</td>
<td>3,2</td>
<td>3,4</td>
<td>3,3</td>
<td>3,4</td>
<td>3,5</td>
<td>3,4</td>
<td>3,4</td>
<td>3,4</td>
</tr>
<tr>
<td>Chemie</td>
<td>14,9</td>
<td>13,0</td>
<td>18,0</td>
<td>17,7</td>
<td>17,7</td>
<td>17,7</td>
<td>17,9</td>
<td>17,9</td>
<td>17,4</td>
<td>16,6</td>
<td>16,7</td>
<td>16,8</td>
</tr>
<tr>
<td>Informatik</td>
<td>2,0</td>
<td>1,4</td>
<td>1,7</td>
<td>2,1</td>
<td>2,3</td>
<td>2,4</td>
<td>2,4</td>
<td>2,3</td>
<td>2,2</td>
<td>2,0</td>
<td>1,9</td>
<td>2,0</td>
</tr>
<tr>
<td>Mathematik</td>
<td>2,5</td>
<td>2,3</td>
<td>2,4</td>
<td>3,0</td>
<td>3,2</td>
<td>3,2</td>
<td>3,4</td>
<td>3,5</td>
<td>3,2</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>Physik, Astronomie</td>
<td>1,8</td>
<td>1,1</td>
<td>1,3</td>
<td>1,6</td>
<td>1,7</td>
<td>1,6</td>
<td>1,7</td>
<td>1,6</td>
<td>1,6</td>
<td>1,4</td>
<td>1,4</td>
<td>1,4</td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>22,0</td>
<td>18,2</td>
<td>16,8</td>
<td>16,8</td>
<td>18,4</td>
<td>18,8</td>
<td>18,9</td>
<td>18,2</td>
<td>18,9</td>
<td>19,7</td>
<td>20,3</td>
<td>21,0</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>5,6</td>
<td>3,5</td>
<td>4,0</td>
<td>4,1</td>
<td>4,2</td>
<td>4,1</td>
<td>4,0</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
<td>3,6</td>
<td>3,5</td>
</tr>
<tr>
<td>Maschinenbau, Verfahrenstechnik, Verkehrstechnik</td>
<td>9,4</td>
<td>6,6</td>
<td>7,4</td>
<td>7,9</td>
<td>8,9</td>
<td>9,3</td>
<td>9,5</td>
<td>9,2</td>
<td>9,7</td>
<td>10,1</td>
<td>9,6</td>
<td>9,4</td>
</tr>
<tr>
<td>Fächergruppen insgesamt</td>
<td>100</td>
</tr>
</tbody>
</table>

Quelle: Studentenstatistik Statistisches Bundesamt; HIS-HF-Berechnungen


56 Für den Studienanfängerjahrgang 2011 liegen zum Zeitpunkt der Erstellung dieses Berichts zwar die vorläufigen Gesamtzahlen vor, noch nicht jedoch die Differenzierung nach Fächergruppen und Studienbereichen.
Teilnahme an hochschulischer Bildung


Abb. 3.12: Studienanfänger(innen) im Tertiärbereich A in ausgewählten OECD-Ländern 2007 bis 2009 nach Fächergruppen in Prozent

<table>
<thead>
<tr>
<th>Länder</th>
<th>Health and welfare</th>
<th>Life sciences, physical sciences, agriculture</th>
<th>Mathematics, computer sciences</th>
<th>Humanities, arts and education</th>
<th>Social sciences, business, law and services</th>
<th>Engineering, manufacturing and construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>15 16 15</td>
<td>7 7 7</td>
<td>5 5 5</td>
<td>22 21 21</td>
<td>41 42 43</td>
<td>9 9 9</td>
</tr>
<tr>
<td>Kanada</td>
<td>/ / /</td>
</tr>
<tr>
<td>Finnland</td>
<td>18 19 20</td>
<td>6 6 6</td>
<td>6 6 6</td>
<td>15 15 15</td>
<td>29 29 29</td>
<td>26 25 24</td>
</tr>
<tr>
<td>Frankreich</td>
<td>/ / /</td>
</tr>
<tr>
<td>Deutschland*</td>
<td>16 16 22</td>
<td>8 8 7</td>
<td>7 7 6</td>
<td>26 25 23</td>
<td>27 28 27</td>
<td>15 16 15</td>
</tr>
<tr>
<td>Italien*</td>
<td>13 12 12</td>
<td>10 9 9</td>
<td>3 3 3</td>
<td>21 20 20</td>
<td>39 39 37</td>
<td>15 14 15</td>
</tr>
<tr>
<td>Japan*</td>
<td>14 14 14</td>
<td>4 4 4</td>
<td>4 4 **</td>
<td>23 23 23</td>
<td>37 37 37</td>
<td>16 15 15</td>
</tr>
<tr>
<td>Niederlande*</td>
<td>19 18 18</td>
<td>3 2 3</td>
<td>5 5 4</td>
<td>22 20 19</td>
<td>43 45 46</td>
<td>8 9 9</td>
</tr>
<tr>
<td>Spanien*</td>
<td>12 12 13</td>
<td>3 3 3</td>
<td>6 6 6</td>
<td>20 20 20</td>
<td>36 37 36</td>
<td>16 16 16</td>
</tr>
<tr>
<td>Schweden</td>
<td>14 15 14</td>
<td>5 5 5</td>
<td>6 6 6</td>
<td>26 26 25</td>
<td>31 30 32</td>
<td>18 18 19</td>
</tr>
<tr>
<td>Vereinigtes Königreich*</td>
<td>18 18 18</td>
<td>9 9 9</td>
<td>6 6 6</td>
<td>26 26 24</td>
<td>25 26 27</td>
<td>8 8 8</td>
</tr>
<tr>
<td>Vereinigte Staaten</td>
<td>/ / /</td>
</tr>
<tr>
<td>Ländermittel*</td>
<td>13 13 14</td>
<td>6 7 6</td>
<td>5 6 5</td>
<td>22 22 20</td>
<td>37 38 39</td>
<td>14 14 15</td>
</tr>
</tbody>
</table>

*) Addiert sich wegen nicht zuzuordnender Werte in einzelnen Jahren nicht auf 100.


---

bereits darauf hingewiesen, dass die geringe Attraktivität der meisten ingenieurwissenschaftlichen Fächer für Frauen die potenzielle Studiennachfrage in diesem Bereich vermindert.

In den letzten Jahren hat die OECD für die Studienanfänger(innen) des Tertiärbereichs A internationale Vergleichsdaten der Fächerstruktur zur Verfügung gestellt (s. Abb. 3.12). In den hier im Mittelpunkt des Interesses stehenden MINT-Fachrichtungen ergeben sich für Deutschland für „Engineering, manufacturing and construction“ dem Durchschnitt entsprechende bzw. leicht überdurchschnittliche Anteilsätze und damit etwas weniger als für Schweden (2009: 19 %) und erheblich weniger als für Finnland (2009: 24 %). Relativ günstiger ist die Position Deutschlands hinsichtlich „Life sciences, physical sciences and agriculture“ (7 % vs. 6 % im OECD-Mittel) und „Mathematics and computer sciences“ (6 % vs. 5 %). Bei der Bewertung dieser Vergleichsdaten ist zu berücksichtigen, dass die Fächerstruktur in Deutschland auf einer relativ schwachen Beteiligung der Bevölkerung an hochschulischer Bildung basiert (s. o. Studienberechtigtenquoten bzw. Studienanfängerquoten im internationalen Vergleich).

3.5 Studienverlauf

Bei der Beschreibung und Beurteilung von Systemen wird häufig das Input-Prozess-Output-Schema verwendet, so auch für Bildungssysteme.58 Für Inputfaktoren wie finanzielle Mittel, Personal oder Studienanfänger(innen) sowie für den Output stehen relativ viele Informationen, vor allem statistische Daten zu Absolvent(inn)en, bereit. Für den Outcome, also die Bildungsergebnisse, sowie die zwischen Input und Output verlaufenden Prozesse ist die Datenlage zumeist schwieriger.59 Im Folgenden sollen mit den Auslandsaufenthalten während des Studiums sowie dem Thema Praktika und fachnahe, studienbegleitende Erwerbstätigkeit zwei Prozessaspekte des Studierens kurz beleuchtet werden. Für das wichtige Thema Studienabbruch stehen neue Daten erst im weiteren Verlauf des Jahres 2012 zur Verfügung, so dass darauf im Folgenden nicht eingegangen wird.60

3.5.1 Auslandsaufenthalte während des Studiums


59 Das gilt ebenso für weniger leicht messbare Aspekte von Input und Output wie Kompetenzen.
61 Vgl. zu den Daten dieses Abschnitts DAAD/HIS 2011.
Teilnahme an hochschulischer Bildung

ist, ob aufgrund der regionalen Nähe der größte Teil dieser Studienanfänger(innen) das Studienangebot im benachbarten Ausland vor allem im Sinne einer Ausweichstrategie nutzt und nach dem Studienabschluss wieder nach Deutschland zurückkehren wird. Daten dazu gibt es nicht.


Abb. 3.13: Auslandsaktivitäten nach Abschlussart an Universitäten und Fachhochschulen (Wintersemester 2009/10)

<table>
<thead>
<tr>
<th></th>
<th>Universitäten</th>
<th>Fachhochschulen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor</td>
<td>Diplom</td>
</tr>
<tr>
<td><strong>Studienphase im Ausland</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realisiert</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Geplant</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td><strong>Zusammen</strong></td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td><strong>Praktikum im Ausland</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realisiert</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Geplant</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td><strong>Zusammen</strong></td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td><strong>Sprachkurs im Ausland</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realisiert</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Geplant</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td><strong>Zusammen</strong></td>
<td>23</td>
<td>19</td>
</tr>
</tbody>
</table>

1) Angaben in Prozent für Kategorien „ja, realisiert“ und „sicher geplant“.
Quelle: Universität Konstanz, AG Hochschulforschung, Studierendensurvey 1983-2010


3.5.2 Praktika und fachnahe Erwerbstätigkeit während des Studiums


64 Dieser Trend zeigt sich europaweit, vgl. EUROSTUDENT 2008, S. 143f.
65 Vgl. DAAD/HIS 2011, S. 44.

3.6 Hochschulabsolvent(inn)en


3.6.1 Absolventenzahl

Im Jahr 2010 setzte sich der Trend einer steigenden Zahl von Erstabsolvent(inn)en fort, der Anstieg bei den Absolvent(inn)en fiel mit 2,1 % jedoch deutlich geringer aus als im Vorjahr. Von 2008 auf 2009 war die Absolventenzahl noch um mehr als 10 % gewachsen. Im Abschlussjahr 2010 haben 294.881 Personen die Hochschulen mit einem ersten Studienabschluss verlassen (Abb. 3.14). Insgesamt, alle Hochschulabschlüsse zusammengenommen, gab es im Prüfungsjahr 2010 361.700 Abgänger(innen) an den Hochschulen, darunter auch 25.600 Promotionen. Die Zahl der Bachelorabschlüsse hat von 2009 auf 2010 um etwa 40.000 (auf etwa 111.000) zugenommen. Damit entfielen 37 % der Erstabschlüsse auf den Bachelor. Die Absolventenzahl wird auch weiterhin dadurch beeinflusst, dass aufgrund der unterschiedlich langen Studiendauer in den traditionellen und den Bachelorstudiengängen die Erstabsolvent(inn)en derzeit aus mehreren stark besetzten Anfängerjahrgängen stammen. Während die Bachelorabsolvent(inn)en bei Studienabschluss durchschnittlich 7,4 Hochschulsemester aufweisen, sind es bei den universitären Altabschlüssen (ohne Lehramt) 13,0 Hochschulsemester, bei den Fachhochschuldiplomen 10,0 Semester. Es ergibt sich ein

69 Vgl. ibid., S. 72.
70 Vgl. ibid., S. 35.
71 Vgl. Wissenschaftsrat 2006.
den doppelten Gymnasialjahrgängen analoger Effekt, der zum Wachstum der Absolventenzahl beiträgt. Anders als beim Übergang auf das G8 verteilt sich der Effekt über mehrere Jahre und wird erst schwächer werden, wenn der Anteil der traditionellen Abschlüsse (Diplom, Magister) zurückgeht.

Die hohe Absolventenzahl bedeutet nicht, dass alle Erstabsolvent(inn)en dem Arbeitsmarkt unmittelbar zur Verfügung stehen. Vor der Studienstrukturreform waren es nur wenige Absolvent(inn)en, die nach dem ersten Studienabschluss weiter studiert haben, entweder in einem Zweit- oder Promotionsstudium. Mit dem Übergang auf die gestufte Struktur hat sich diese Situation geändert, denn ein großer Teil der Bachelor wird weiter studieren. Nimmt man eine Masterquote von 75 % (Universitäten) bzw. 45% (Fachhochschulen) sowie eine Promovierendenquote der Universitätstagangsin einen von 15 % an (ohne medizinische Promotionen), verbleiben von den insgesamt etwa 362.000 Absolvent(inn)en des Jahrgangs 2010 rechnerisch etwa 270.000 Personen, die das Hochschulsystem verlassen.

### Abb. 3.14: Hochschulabsolvent(inn)en 1993 bis 2010

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolvent(inn)en insgesamt</td>
<td>201.723</td>
<td>229.920</td>
<td>214.473</td>
<td>252.482</td>
<td>256.704</td>
<td>286.391</td>
<td>309.364</td>
<td>338.656</td>
<td>361.697</td>
</tr>
<tr>
<td>Anteil Frauen in %</td>
<td>38,9</td>
<td>40,7</td>
<td>44,8</td>
<td>49,5</td>
<td>50,5</td>
<td>50,8</td>
<td>51,1</td>
<td>51,0</td>
<td>51,4</td>
</tr>
<tr>
<td>Anteil Bildungsausländer in %</td>
<td>-</td>
<td>-</td>
<td>4,1</td>
<td>7,2</td>
<td>7,7</td>
<td>8,3</td>
<td>8,3</td>
<td>8,0</td>
<td>8,0</td>
</tr>
<tr>
<td>Erstabsolvent(inn)en</td>
<td>173.756</td>
<td>197.015</td>
<td>176.654</td>
<td>207.936</td>
<td>220.782</td>
<td>239.877</td>
<td>260.498</td>
<td>288.875</td>
<td>294.881</td>
</tr>
<tr>
<td>Anteil Frauen in %</td>
<td>39,8</td>
<td>41,2</td>
<td>45,6</td>
<td>50,8</td>
<td>51,6</td>
<td>51,8</td>
<td>52,2</td>
<td>51,7</td>
<td>52,0</td>
</tr>
<tr>
<td>Anteil Universität in %</td>
<td>65,2</td>
<td>63,6</td>
<td>64,3</td>
<td>60,8</td>
<td>61,9</td>
<td>62,4</td>
<td>62,4</td>
<td>61,8</td>
<td>61,8</td>
</tr>
<tr>
<td>darunter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Nur Abschlüsse, die als Folgestudium gezählt wurden; ohne Master als Erstabschlüsse.

Quelle: Statistisches Bundesamt, Fachserie 11, Reihe 4.2 sowie Recherche in HIS/ICE

Die einleitend im Abschnitt 3.3 bereits erwähnte Feminisierung der Hochschulausbildung zeigt sich seit einigen Jahren auch beim Anteil der Absolvent(inn)en, der seit 2005 stets über 50 % liegt. Damit übersteigt der Absolventinnenanteil den Anteil der Studienanfänger(innen) um etwa zwei Prozentpunkte. Hier macht sich der etwas geringere Studienabbruch bei den Frauen bemerkbar.

### 3.6.2 Absolventenquote und Beteiligung an der Hochschulbildung im internationalen Vergleich

#### Absolventenquote


Die Absolventenquote in Deutschland von 2008 auf 2009 um drei Prozentpunkte (von 26,2 % auf 29,2 %) gestiegen; einen solch starken Zuwachs in einem Jahr gab es seit 1997 erstmals (vgl. Abb. 3.15). Die Quote stieg auch 2010 weiter an, auf 29,9 %. Bei Männern und Frauen betrug der Zuwachs seit 2008 gleichermaßen etwa dreieinhalb Prozentpunkte; die Absolventenquote liegt für die Frauen damit nach wie vor um etwa drei Prozentpunkte über derjenigen der Männer. Nach dem jüngsten Anstieg nähert sich die Absolventenquote – wenn nur die Deutschen ohne die ausländische Bevölkerung
betrachtet werden – mit 31,9 % allmählich der Zielmarke von 35 % eines Altersjahrgangs, die der Wissenschaftsrat vorgeschlagen hat.\textsuperscript{77} Potenziale für die weitere Erhöhung der Absolventenquote lie-\ßen sich durch die Erhöhung der Studieneffektivität (Senkung des Studienabbruchs) sowie die Aus-\weitung der Nachfrage nach Hochschulbildung, insbesondere unter jungen Menschen mit Migrations-\hintergrund, gewinnen.\textsuperscript{78}

In den OECD-Staaten hat sich die Abschlussquote im Tertiärbereich A (der in Deutschland den Uni-\versitäten und Fachhochschulen, aber ohne Verwaltungsfachhochschulen und Berufsakademien, ent-\spricht) zwischen 1995 und 2009 fast verdoppelt (vgl. Abb. 3.22). Auch in Deutschland hat sich die Absolventenquote in diesem Zeitraum von 14 % auf 29 % verdoppelt. Dennoch liegt Deutschland, zusammen mit Österreich, Slowenien, Spanien sowie der Türkei und Mexiko, am unteren Ende der Bandbreite der Abschlussquoten, die von 19 % (Mexiko) bis 61 % (Slowakei) reichen. Der OECD-\Mittelwert liegt bei knapp 39 % (vgl. Abb. 3.22).

Der internationale Vergleich von Bildungssystemen ist schwierig und kann nationale Besonderheiten und Stärken, wie etwa ein gut ausgebautes und leistungsfähiges System beruflicher Ausbildung, nur begrenzt berücksichtigen. Natürlich spielt in Deutschland das berufliche Bildungssystem und die etab-\lierte berufliche Fort- und Weiterbildung an Meister- und Technikerschulen eine wichtige Rolle und übernimmt Ausbildungsleistungen, die in anderen Staaten von Hochschulen abgedeckt werden. Dieser leistungsfähige Unterausbau kann vor allem durch eine bessere Durchlässigkeit von beruflicher zur Hoch-\schulbildung noch stärker dazu genutzt werden, die benötigten Fachkräfte gerade für die wissensinten-\siven Dienstleistungen und das wissensintensive Produzierende Gewerbe zur Verfügung zu stellen, die sich national wie international durch eine besonders hohe Akademikerquote auszeichnen (vgl. Kap. 2). Die Voraussetzungen dafür sind in Deutschland in den letzten Jahren geschaffen worden, bisher wer-\den die betreffenden Wege an die Hochschule aber nur selten beschritten (vgl. Kap. 3.3.2).

Abb. 3.15: Absolventenquote (Anteil der Absolvent(inn)en\textsuperscript{1} an der altersspezifischen Bevölkerung) 1997 bis 2010

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsche und</td>
<td></td>
</tr>
<tr>
<td>Ausländer(innen)</td>
<td></td>
</tr>
<tr>
<td>insgesamt</td>
<td>16,4</td>
<td>16,4</td>
<td>16,8</td>
<td>16,9</td>
<td>17,0</td>
<td>17,4</td>
<td>18,4</td>
<td>19,5</td>
<td>21,1</td>
<td>22,2</td>
<td>24,1</td>
<td>26,2</td>
<td>29,2</td>
<td>29,9</td>
</tr>
<tr>
<td>weiblich</td>
<td>14,6</td>
<td>15,0</td>
<td>15,8</td>
<td>16,2</td>
<td>16,6</td>
<td>17,2</td>
<td>18,7</td>
<td>19,7</td>
<td>21,6</td>
<td>23,2</td>
<td>25,2</td>
<td>27,7</td>
<td>30,6</td>
<td>31,5</td>
</tr>
<tr>
<td>männlich</td>
<td>18,0</td>
<td>17,7</td>
<td>17,8</td>
<td>17,5</td>
<td>17,5</td>
<td>17,5</td>
<td>18,2</td>
<td>19,2</td>
<td>20,5</td>
<td>21,3</td>
<td>23,0</td>
<td>24,7</td>
<td>27,8</td>
<td>28,3</td>
</tr>
<tr>
<td>nur Deutsche</td>
<td></td>
</tr>
<tr>
<td>insgesamt</td>
<td>18,5</td>
<td>18,6</td>
<td>19,0</td>
<td>19,1</td>
<td>19,2</td>
<td>19,6</td>
<td>20,8</td>
<td>21,8</td>
<td>23,2</td>
<td>24,3</td>
<td>26,0</td>
<td>28,1</td>
<td>31,2</td>
<td>31,9</td>
</tr>
<tr>
<td>weiblich</td>
<td>16,5</td>
<td>17,0</td>
<td>17,8</td>
<td>18,3</td>
<td>18,7</td>
<td>19,4</td>
<td>21,0</td>
<td>21,1</td>
<td>23,9</td>
<td>25,4</td>
<td>27,3</td>
<td>29,7</td>
<td>32,7</td>
<td>33,7</td>
</tr>
<tr>
<td>männlich</td>
<td>20,4</td>
<td>20,1</td>
<td>20,2</td>
<td>19,8</td>
<td>19,6</td>
<td>19,9</td>
<td>20,5</td>
<td>21,5</td>
<td>22,6</td>
<td>23,3</td>
<td>24,8</td>
<td>26,6</td>
<td>29,7</td>
<td>30,3</td>
</tr>
</tbody>
</table>

\textsuperscript{1} Absolventenquote für Studienerstabschlüsse, Absolventenquote nach dem OECD-Verfahren: Anteil der Absolvent(inn)en an der Bevölkerung des entsprechenden Alters
Quelle: Statistisches Bundesamt, Fachserie 11, Reihe 4.1.3: Nichtmonetäre hochschulstatistische Kennzahlen, verschiedene Jahrgänge

Im internationalen Vergleich ist für Deutschland der geringe Anteil an Personen mit einem Hoch-\schulabschluss (ISCED 5A/6) an der Bevölkerung im erwerbstätigen Alter bemerkenswert (vgl. Abb. 3.16). Ihr Anteil ist zwischen 1997 und 2009 nur um drei Prozentpunkte, von 14 % auf 17 %, gestie-\gen. Unter allen OECD-Staaten, für die Daten vorliegen, ist das die geringste Wachstumsrate, abgese-\hen von den USA, wo eine ähnlich geringe Dynamik zu beobachten ist, allerdings auf einem sehr viel

\textsuperscript{77} Wissenschaftsrat 2006, S. 65.
\textsuperscript{78} Vgl. Leszczensky/Frietsch/Gehrke/Helmrich 2009, S. 76.
Abb. 3.16: Anteil von Personen mit einem Hochschulabschluss (ISCED 5A/6) nach Altersgruppen 1997, 2000, 2005 und 2009 im internationalen Vergleich

<table>
<thead>
<tr>
<th>Altersgruppe</th>
<th>25 bis 64</th>
<th>25 bis 34</th>
<th>35 bis 44</th>
<th>45 bis 54</th>
<th>55 bis 64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>1997</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>18</td>
<td>22</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>23</td>
<td>29</td>
<td>23</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>27</td>
<td>35</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>Österreich</td>
<td>1997</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Kanada</td>
<td>1997</td>
<td>18</td>
<td>21</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>20</td>
<td>25</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>23</td>
<td>28</td>
<td>25</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>25</td>
<td>30</td>
<td>29</td>
<td>21</td>
</tr>
<tr>
<td>Schweiz</td>
<td>1997</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>19</td>
<td>22</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>25</td>
<td>31</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>Tschechien</td>
<td>1997</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>16</td>
<td>20</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Finnland</td>
<td>1997</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>15</td>
<td>17</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>18</td>
<td>27</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>23</td>
<td>36</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>Frankreich</td>
<td>1997</td>
<td>10</td>
<td>14</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>11</td>
<td>16</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>15</td>
<td>22</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>17</td>
<td>26</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Deutschland</td>
<td>1997</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2000</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>17</td>
<td>19</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>OECD-</td>
<td>Durch-</td>
<td>1999</td>
<td>14</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>schnitt</td>
<td>2001</td>
<td>15</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>19</td>
<td>24</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>21</td>
<td>28</td>
<td>23</td>
<td>16</td>
</tr>
</tbody>
</table>

1) Italien: Wert für 1997 nicht verfügbar.
Quelle: OECD, Bildung auf einen Blick, verschiedene Jahrgänge; OECD Labour Force Online Database


Teilnahme an hochschulischer Bildung

lerdings noch studiert, stieg der Akademikeranteil bereits von 13 % auf 19 %. In anderen Staaten, etwa in Japan, den Niederlanden, Schweden oder der Schweiz, ist die Ausweitung der Hochschulbildung früher und in stärkerem Maße erfolgt (Abb. 3.16).

3.7 Ausbildung von MINT-Fachkräften


3.7.1 Fächerstruktur


Unabhängig von diesem statistischen Basiseffekt ist für die Ingenieurwissenschaften aufgrund der gerade in den letzten Jahren stark gestiegenen Studienanfängerzahlen mit einer weiteren Steigerung der Absolventenzahl zu rechnen. Allerdings müssen dabei die Wirkungen des Studienabbruchs und der Fachwechsel berücksichtigt werden. Denn die Zahl der Absolvent(inn)en folgt zwar in groben Zügen den Entwicklungen auf der Inputseite (Studienanfänger(innen), vgl. dazu Kap. 3.3), wird aber durch Prozesskennziffern wie Studien- und Ausbildungsabbruch sowie die individuell wie strukturell verschieden langen Ausbildungszeiten beeinflusst.

Der Anteil der Absolventinnen steigt 2010 wieder leicht an und liegt mit 52 % weiterhin über der 50-Prozent-Marke (vgl. Abb. 3.17, linkes Diagramm, Abb. 3.18). Innerhalb der MINT-Fächer, die den geringsten Anteil an Absolvent(inn)en aufweisen, ist eine divergierende Entwicklung zu erkennen. In der Fächergruppe Mathematik, Naturwissenschaften nimmt der Frauenanteil leicht zu, während er in den Ingenieurwissenschaften wieder leicht sinkt. Der Frauenanteil in den MINT-Fächern ist deshalb ein wichtiger Indikator für die technologische Leistungsfähigkeit und das Fachkräfteangebot, weil hier

80 Das wird sich teilweise ändern, wenn die erste Studienanfängerkohorte des Bildungspanels die Hochschulen verlassen haben wird (vgl. Aschinger/Epstein/Müller/Schaeper/Vöttiner/Weiß 2011).
ein ungenutztes Potenzial liegt. Allerdings mag die Entscheidung gegen ein MINT-Fach bei jungen Frauen insofern begründet sein, als der Arbeitsmarkt häufig Signale aussendet, nach denen sich ein MINT-Studium für Frauen nicht lohnt.

Abb. 3.17: Frauenanteil und Fächerstrukturquoten in ausgewählten Fächergruppen* 1993 bis 2010 in Prozent (nur Erstabschlüsse)

Vor allem in der Fächergruppe Mathematik, Naturwissenschaften spielen Lehramtsabschlüsse (für Mathematik, Biologie und Geografie) traditionell eine große Rolle. 2010 schlossen 6.441 Erstabsolvent(inn)en hier ein Lehramtsstudium ab, davon entfielen mehr als zwei Drittel auf Frauen. In den Schulfächern Mathematik (70 %), Physik (32 %), Biologie (77 %) und Chemie (58 %) lag der Frauenanteil unter den Absolvent(inn)en mit Lehramtsabschluss jeweils deutlich über dem der Abschlüsse Diplom oder Bachelor.


* Ingenieurwissenschaften seit 2010 einschließlich Wirtschaftsingenieurwesen mit ingenieurwissenschaftlichem Schwerpunkt
Quelle: Statistisches Bundesamt, Hochschulstatistik, eigene Berechnungen

81 Vgl. z. B. Heine/Egeln/Kerst/Müller/Park 2006; Schramm/Kerst 2009; Lins/Mellies/Schwarze 2008.
In der Fächergruppe Mathematik, Naturwissenschaften sinkt die Absolventenzahl in der Informatik gegen den Trend um 7%, während die anderen ausgewiesenen Studienbereiche weiter steigende Absolventenzahlen verzeichnen. Die Anteile an Absolventinnen bleiben zwischen den verschiedenen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Informatik</th>
<th>Mathematik</th>
<th>Physik/Astronomie</th>
<th>Chemie</th>
<th>Biologie</th>
<th>Ingenieurwesen</th>
<th>Maschinenbau</th>
<th>Elektrotechnik</th>
<th>Bauingenieurwesen</th>
<th>Wirtschaftsingenieurwesen mit ingenieureis. Schwerpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frauenanteil in %</td>
</tr>
<tr>
<td>1993</td>
<td>39,8</td>
<td>44,7</td>
<td>46,6</td>
<td>42,7</td>
<td>48,5</td>
<td>44,6</td>
<td>37,1</td>
<td>17,6</td>
<td>44,6</td>
<td>38,8</td>
</tr>
<tr>
<td>1995</td>
<td>41,2</td>
<td>45,2</td>
<td>45,2</td>
<td>44,4</td>
<td>45,5</td>
<td>45,4</td>
<td>37,5</td>
<td>16,1</td>
<td>45,3</td>
<td>37,8</td>
</tr>
<tr>
<td>1999</td>
<td>45,6</td>
<td>45,2</td>
<td>45,4</td>
<td>44,6</td>
<td>45,4</td>
<td>46,4</td>
<td>36,7</td>
<td>15,8</td>
<td>46,4</td>
<td>38,2</td>
</tr>
<tr>
<td>2003</td>
<td>50,8</td>
<td>53,0</td>
<td>49,6</td>
<td>46,7</td>
<td>51,3</td>
<td>51,9</td>
<td>38,3</td>
<td>14,8</td>
<td>47,9</td>
<td>39,3</td>
</tr>
<tr>
<td>2007</td>
<td>51,8</td>
<td>53,2</td>
<td>49,6</td>
<td>46,7</td>
<td>51,3</td>
<td>51,9</td>
<td>38,3</td>
<td>14,8</td>
<td>47,9</td>
<td>39,3</td>
</tr>
<tr>
<td>2010</td>
<td>51,7</td>
<td>52,8</td>
<td>50,2</td>
<td>47,9</td>
<td>50,2</td>
<td>51,2</td>
<td>35,5</td>
<td>13,8</td>
<td>45,3</td>
<td>35,7</td>
</tr>
</tbody>
</table>

Abbildung 3.18: Erstabsolvent(inn)en, Fächerstrukturquoten und Frauenanteile zwischen 1993 und 2010

1) Maschinenbau, Verfahrenstechnik einschließlich Verkehrstechnik, Nautik.
2) Bis 2009 Wirtschaftsingenieurwesen mit wirtschafts- und ingenieurwissenschaftlichem Schwerpunkt, ab 2010 auch mit ingenieurwissenschaftlichem Schwerpunkt.

Quelle: Statistisches Bundesamt, Fachserie 11, Reihe 4.2 sowie Recherche in HIS/ICE


3.7.2 Promotionen


84 Studiengänge, die nach dem Erwerb eines Fachbachelors den Anschluss eines Masterstudiums mit dem Ziel Lehramt ermöglichen.
Abb. 3.19: Zahl der Promovierten und Promotionsintensität¹ 1993 bis 2009 in abs. und in Prozent

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>20.5</td>
<td>18.6</td>
<td>19.5</td>
<td>22.8</td>
<td>22.0</td>
<td>21.7</td>
<td>22.4</td>
<td>21.3</td>
<td>20.2</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>14.9</td>
<td>13.1</td>
<td>14.2</td>
<td>16.7</td>
<td>16.3</td>
<td>16.3</td>
<td>17.2</td>
<td>15.8</td>
<td>15.5</td>
<td></td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>1.653</td>
<td>2.151</td>
<td>2.398</td>
<td>2.332</td>
<td>2.112</td>
<td>2.336</td>
<td>2.206</td>
<td>2.247</td>
<td>2.541</td>
<td>2.340</td>
<td>2.561</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>13.5</td>
<td>13.2</td>
<td>14.8</td>
<td>18.0</td>
<td>22.4</td>
<td>20.3</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>darunter:</td>
<td></td>
</tr>
<tr>
<td>Maschinenbau²</td>
<td>906</td>
<td>1.176</td>
<td>1.289</td>
<td>1.253</td>
<td>1.155</td>
<td>1.261</td>
<td>1.166</td>
<td>1.216</td>
<td>1.282</td>
<td>1.201</td>
<td>1.331</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>16.6</td>
<td>17.0</td>
<td>22.8</td>
<td>30.4</td>
<td>33.1</td>
<td>36.6</td>
<td>37.7</td>
<td>31.9</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>384</td>
<td>524</td>
<td>589</td>
<td>582</td>
<td>506</td>
<td>537</td>
<td>531</td>
<td>537</td>
<td>608</td>
<td>568</td>
<td>656</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>11.8</td>
<td>12.8</td>
<td>16.5</td>
<td>20.9</td>
<td>23.8</td>
<td>25.1</td>
<td>28.9</td>
<td>25.2</td>
<td>27.1</td>
<td></td>
</tr>
<tr>
<td>Bauingenieuren</td>
<td>159</td>
<td>241</td>
<td>251</td>
<td>296</td>
<td>228</td>
<td>300</td>
<td>265</td>
<td>240</td>
<td>329</td>
<td>258</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>12.9</td>
<td>12.3</td>
<td>8.6</td>
<td>11.2</td>
<td>10.3</td>
<td>9.7</td>
<td>14.7</td>
<td>12.9</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>31.5</td>
<td>27.7</td>
<td>30.9</td>
<td>37.3</td>
<td>37.1</td>
<td>38.9</td>
<td>39.8</td>
<td>37.1</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>darunter:</td>
<td></td>
</tr>
<tr>
<td>Informatik</td>
<td>186</td>
<td>314</td>
<td>441</td>
<td>417</td>
<td>489</td>
<td>520</td>
<td>558</td>
<td>588</td>
<td>695</td>
<td>719</td>
<td>832</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>13.8</td>
<td>12.4</td>
<td>16.6</td>
<td>19.5</td>
<td>22.0</td>
<td>22.7</td>
<td>22.8</td>
<td>18.2</td>
<td>16.3</td>
<td></td>
</tr>
<tr>
<td>Mathematik</td>
<td>285</td>
<td>341</td>
<td>523</td>
<td>465</td>
<td>429</td>
<td>474</td>
<td>499</td>
<td>454</td>
<td>463</td>
<td>417</td>
<td>519</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>12.9</td>
<td>12.0</td>
<td>12.7</td>
<td>15.6</td>
<td>17.9</td>
<td>17.0</td>
<td>16.7</td>
<td>13.5</td>
<td>14.6</td>
<td></td>
</tr>
<tr>
<td>Physik/Astronomie</td>
<td>1.198</td>
<td>1.435</td>
<td>1.630</td>
<td>1.300</td>
<td>1.287</td>
<td>1.154</td>
<td>1.221</td>
<td>1.268</td>
<td>1.210</td>
<td>1.408</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>62.4</td>
<td>35.5</td>
<td>49.0</td>
<td>57.7</td>
<td>60.6</td>
<td>72.5</td>
<td>80.6</td>
<td>74.2</td>
<td>78.7</td>
<td></td>
</tr>
<tr>
<td>Chemie</td>
<td>2.172</td>
<td>2.374</td>
<td>2.498</td>
<td>2.194</td>
<td>1.639</td>
<td>1.238</td>
<td>1.154</td>
<td>1.221</td>
<td>1.268</td>
<td>1.751</td>
<td>1.841</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>68.2</td>
<td>60.1</td>
<td>71.6</td>
<td>91.2</td>
<td>88.2</td>
<td>90.0</td>
<td>91.7</td>
<td>82.2</td>
<td>73.9</td>
<td></td>
</tr>
<tr>
<td>Biologie</td>
<td>1.526</td>
<td>1.744</td>
<td>1.774</td>
<td>1.667</td>
<td>1.17</td>
<td>1.205</td>
<td>1.920</td>
<td>2.179</td>
<td>2.327</td>
<td>2.466</td>
<td>2.670</td>
<td></td>
</tr>
<tr>
<td>Promotionsintensität in %</td>
<td>–</td>
<td>–</td>
<td>41.0</td>
<td>40.5</td>
<td>44.2</td>
<td>53.5</td>
<td>50.2</td>
<td>54.8</td>
<td>55.1</td>
<td>56.3</td>
<td>56.0</td>
<td></td>
</tr>
</tbody>
</table>

¹ Anteil der Promotionen am Dreijahresdurchschnitt der Universitätsabsolvent(inn)en vier bis sechs Jahre vorher
² Einschließlich Verfahrenstechnik, Verkehrstechnik/Nautik
Quelle: Statistisches Bundesamt, Fachserie 11, R. 4.2 sowie Hauptberichte (Recherche in ICE-Land), eigene Berechnungen

3.8 Bildungsinländer und Bildungsausländer an Hochschulen

Bei der Ausbildung von akademisch qualifizierten MINT-Fachkräften bilden Studierende, die aus dem Ausland zum Studium nach Deutschland kommen, eine wichtige Gruppe. Deutschland ist mittlerweile ein wichtiges Zielland für Studierende aus dem Ausland, die für unterschiedliche Studienphasen ins Land kommen. In der Hochschulstatistik werden zwei Gruppen von ausländischen Studierenden erfasst: die Bildungsausländer(innen), die über eine ausländische Staatsbürgerschaft verfügen und ihre Hochschulzugangsberechtigung im Ausland erworben haben, sowie die Bildungsinländer(innen), die ebenfalls über eine ausländische Staatsbürgerschaft verfügen, aber ihre Hochschulzugangsberechtigung in Deutschland erworben haben. Die Zahl dieser Studierenden stellt einen wichtigen Indikator für die Internationalisierung des Studiums und der Lehre dar und gibt unter anderem Auskunft über die Attraktivität des deutschen Hochschulsystems im internationalen Vergleich.

Im Studienjahr 2010 waren 245.000 ausländische Studierende an den deutschen Hochschulen eingeschrieben (s. Abb. 3.20). Sie stellen 11,5 % aller Studierenden in Deutschland. Dreizehn Jahre zuvor lag ihre Zahl noch bei 150.000 und ihr Anteil an allen Studierenden fiel mit 8,3 % deutlich niedriger aus. Den größten Teil der ausländischen Studierenden stellen die Bildungsausländer(innen). Im Studi-
Bildung, Qualifikation und technologische Leistungsfähigkeit


Nicht alle bildungsausländischen Studierenden wollen jedoch in Deutschland ein komplettes Studium absolvieren. So gaben knapp 11.000 bildungsausländische Studienanfänger(innen) des Jahres 2009 an, in Deutschland keinen Abschluss anzustreben. Es handelt sich hier vielfach um Studierende mit einem Erasmus- oder einem anderen Stipendium, die an der deutschen Hochschule einen Gastaufenthalt verbringen.

Abb. 3.20: Ausländische Studierende an deutschen Hochschulen in absoluten Zahlen


Der Anteil der Bildungsausländer(innen) unter den Absolvent(inn)en mit einem ersten Studienabschluss geht 2010 um fast einen Prozentpunkt zurück, liegt in den Ingenieurwissenschaften mit 7,4 % aber immer noch überdurchschnittlich hoch. In den Naturwissenschaften ist der bildungsausländische Anteil deutlicher zurückgegangen und liegt bei 4,4 % (vgl. Abb. 3.21.1). Im Hinblick auf den Arbeitsmarkt und das Fachkräftepotenzial für Hochqualifizierte gerade in den MINT-Fächern ist jedoch vor allem der hohe Anteil ausländischer Absolvent(inn)en bei den Masterabschlüssen und Promotionen interessant (vgl. Abb. 3.21.2). Gegenüber dem Bildungsausländeranteil von 5 % an den Erstabsolvent(inn)en liegt die Quote bei den Promotionen mit 15 % dreimal so hoch. Dieser Anteil ist in den
Teilnahme an hochschulischer Bildung


Die Zahl der Bildungsinländer(innen) an den deutschen Hochschulen hat sich 2010 um sechs Prozent erhöht und liegt nun mit 67.000 Studierenden auf einem neuen Höchstwert. Angesichts der gestiegenen Zahl von Jugendlichen mit Migrationshintergrund (Bildungsinländer(innen) und Deutsche mit Migrationshintergrund) in Deutschland, gerade auch solchen, die sich nicht bzw. noch nicht für eine deutsche Staatsbürgerschaft entschieden haben,87 kann die derzeitige Entwicklung bei den Bildungsinländer(innen) dennoch nicht befriedigen.88 Zwar fällt die Studierbereitschaft unter Studienberechtigten mit Migrationshintergrund höher aus als unter deutschen Studienberechtigten.89 Insgesamt ist aber davon auszugehen, dass es nach wie vor nicht gelingt, Jugendliche, die deutsche Schulen besuchen, deren Eltern aber nicht über die deutsche Staatsbürgerschaft verfügen, ihrem Anteil an der Altersgruppe entsprechend zum Erwerb einer Hochschulzugangsberechtigung zu führen. An den Hochschulen sind Studierende mit Migrationshintergrund daher unterrepräsentiert. 2010 stellten Bildungsinländer(innen) nur 2,2 % der Erstabsolvent(innen) und 0,4 % der Promovierten. Im Vergleich zu den Vorjahren bedeutet das eine nur sehr geringe Steigerung um jeweils 0,1 Prozentpunkte. Nach dem Erstabschluss gelingt es also nicht, die Absolvent(inn)en mit Migrationshintergrund zumindest entsprechend ihrem Anteil an allen Erstabsolvent(inn)en an der wissenschaftlichen Weiterqualifizierung zu beteiligen.

88 Der Migrationshintergrund ist in der Hochschulstatistik nicht enthalten; man muss deshalb näherungsweise auf den Anteil der Bildungsinländer(innen) zurückgreifen. Die stark unterdurchschnittliche Beteiligung der Bildungsinländer(innen) an der Hochschulbildung zeigt sich jedoch bereits darin, dass 2010 etwa 8,4 % der Bevölkerung im Alter von unter 25 Jahren einen Migrationshintergrund mit einer ausländischen Staatsangehörigkeit hatte (vgl. Statistisches Bundesamt, Fachserie 1, Reihe 2.2, Bevölkerung mit Migrationshintergrund 2010, Tab. 1) und somit (überwiegend) als Bildungsinländer(innen) betrachtet werden müssen.
89 Autorenguppe Bildungsberichterstattung 2010, S. 289.
### Abb. 3.2.1: Bildungsausländische Studienanfänger(innen) im Erststudium und Erstabsolvent(inn)en 2000, 2007 bis 2010 in ausgewählten Fächergruppen und Studienbereichen

<table>
<thead>
<tr>
<th>Fachrichtung</th>
<th>Bildungsausländische Studienanfänger (Anzahl)</th>
<th>Ausländische Studienanfänger (in %)</th>
<th>Bildungsausländer mit Erstabschluss (Anzahl)</th>
<th>Erstabsolventen mit Erstabschluss (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insgesamt</td>
<td>36.071 34.134 36.094</td>
<td>10.7 9.7 8.7 8.8 8.8</td>
<td>16.343 17.085 15.588</td>
<td>3.3 6.2 6.3 6.1 5.3</td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>6.646 6.001 6.884</td>
<td>10.2 9.6 9.2 7.6 8.1</td>
<td>3.960 4.274 3.684</td>
<td>4.3 9.5 9.3 9.1 7.4</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>2.804 2.603 2.917</td>
<td>9.4 8.3 7.4 6.8 7.4</td>
<td>1.472 1.630 1.535</td>
<td>4.6 8.0 7.5 7.5 6.7</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>1.893 1.499 1.496</td>
<td>14.9 14.2 14.3 11.2 11.0</td>
<td>1.465 1.487 1.109</td>
<td>7.3 16.3 17.3 16.6 12.8</td>
</tr>
<tr>
<td>Bauingenieurerw.</td>
<td>512 427 701</td>
<td>6.2 7.4 6.9 5.0 6.5</td>
<td>279 324 264</td>
<td>2.7 7.1 7.0 7.4 5.3</td>
</tr>
<tr>
<td>Mathematik/Naturwiss.</td>
<td>4.290 3.180 3.927</td>
<td>7.8 6.8 7.0 5.8 5.7</td>
<td>2447 2637 2.126</td>
<td>3.0 5.9 5.6 5.5 4.4</td>
</tr>
<tr>
<td>Informatik</td>
<td>1.845 1.698 1.616</td>
<td>8.3 9.3 8.6 7.4 6.7</td>
<td>1.434 1.526 1.183</td>
<td>4.9 8.7 9.0 9.0 7.5</td>
</tr>
<tr>
<td>Mathematik</td>
<td>485 443 443</td>
<td>7.5 4.3 4.3 3.7 3.5</td>
<td>243 250 239</td>
<td>1.6 4.1 4.0 3.6 3.3</td>
</tr>
<tr>
<td>Physik</td>
<td>390 307 327</td>
<td>9.3 6.4 7.8 6.0 6.0</td>
<td>106 172 90</td>
<td>3.4 4.3 3.4 4.5 2.2</td>
</tr>
<tr>
<td>Chemie</td>
<td>439 419 511</td>
<td>11.0 6.5 6.5 5.6 6.4</td>
<td>226 211 197</td>
<td>4.2 6.0 5.6 4.3 3.9</td>
</tr>
<tr>
<td>Biologie</td>
<td>636 473 535</td>
<td>4.6 5.4 7.3 4.7 5.4</td>
<td>278 308 235</td>
<td>2.6 3.7 3.4 3.5 2.6</td>
</tr>
</tbody>
</table>

### Abb. 3.2.2: Promotionen und Masterabschlüsse von Bildungsausländern 2006 bis 2010 in ausgewählten Fächergruppen und Studienbereichen

<table>
<thead>
<tr>
<th>Fachrichtung</th>
<th>Masterabschlüsse (Anzahl)</th>
<th>Promotionen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insgesamt</td>
<td>5.707 6.242 7.558</td>
<td>5.707 6.242 7.558</td>
</tr>
<tr>
<td>Ingenieurwissenschaften</td>
<td>1.962 1.854 2.235</td>
<td>1.962 1.854 2.235</td>
</tr>
<tr>
<td>Maschinenbau</td>
<td>663 653 784</td>
<td>663 653 784</td>
</tr>
<tr>
<td>Elektrotechnik</td>
<td>732 615 664</td>
<td>732 615 664</td>
</tr>
<tr>
<td>Bauingenieurerw.</td>
<td>188 196 248</td>
<td>188 196 248</td>
</tr>
<tr>
<td>Mathematik/Naturwiss.</td>
<td>899 1.035 1.191</td>
<td>899 1.035 1.191</td>
</tr>
<tr>
<td>Informatik</td>
<td>482 560 605</td>
<td>482 560 605</td>
</tr>
<tr>
<td>Mathematik</td>
<td>74 46 96</td>
<td>74 46 96</td>
</tr>
<tr>
<td>Physik</td>
<td>71 164 98</td>
<td>71 164 98</td>
</tr>
<tr>
<td>Chemie</td>
<td>56 83 92</td>
<td>56 83 92</td>
</tr>
<tr>
<td>Biologie</td>
<td>116 114 174</td>
<td>116 114 174</td>
</tr>
</tbody>
</table>

---

1) Einschl. Bergbau u. Hüttenwesen, Verkehrstechnik und Nautik
2) Einschl. Bergbau u. Hüttenwesen, Verkehrstechnik und Nautik
Quelle: Statistisches Bundesamt, Hochschulstatistik, Recherche in HIS/ICE, eigene Berechnungen
<table>
<thead>
<tr>
<th>Staat</th>
<th>Abschlussquoten im Tertiärbereich A (ISCED 5A)&lt;sup&gt;4)&lt;/sup&gt;</th>
<th>Promoviertenquote (ISCED 6)</th>
<th>Anteil von Absolventinnen insgesamt und in den Ingenieur- und Naturwissenschaften&lt;sup&gt;2)&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australien</td>
<td>36</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>Österreich</td>
<td>15</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Tschechien</td>
<td>14</td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>Kanada</td>
<td>27</td>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>Dänemark</td>
<td>25</td>
<td>37</td>
<td>45</td>
</tr>
<tr>
<td>Finnland</td>
<td>20</td>
<td>41</td>
<td>48</td>
</tr>
<tr>
<td>Frankreich</td>
<td>25</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Deutschland</td>
<td>14</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Griechenland</td>
<td>14</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Ungarn</td>
<td>30</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>Island</td>
<td>20</td>
<td>33</td>
<td>63</td>
</tr>
<tr>
<td>Irland</td>
<td>30</td>
<td>39</td>
<td>45</td>
</tr>
<tr>
<td>Italien</td>
<td>19</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>Japan</td>
<td>25</td>
<td>29</td>
<td>39</td>
</tr>
<tr>
<td>Südkorea</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Niederlande</td>
<td>29</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>Neuseeland</td>
<td>33</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>Norwegen</td>
<td>26</td>
<td>37</td>
<td>43</td>
</tr>
<tr>
<td>Polen</td>
<td>.</td>
<td>34</td>
<td>47</td>
</tr>
<tr>
<td>Portugal</td>
<td>23</td>
<td>23</td>
<td>43</td>
</tr>
<tr>
<td>Slowakei</td>
<td>15</td>
<td>.</td>
<td>35</td>
</tr>
<tr>
<td>Spanien</td>
<td>24</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Schweden</td>
<td>24</td>
<td>28</td>
<td>41</td>
</tr>
<tr>
<td>Schweiz</td>
<td>9</td>
<td>12</td>
<td>30</td>
</tr>
<tr>
<td>Türkei</td>
<td>6</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Großbritannien</td>
<td>37</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>USA</td>
<td>33</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>OECD-Mittel</td>
<td>20</td>
<td>28</td>
<td>37</td>
</tr>
</tbody>
</table>


<sup>2)</sup> Die Promoviertenquote, genauer Abschlussquote weiterführender, forschungsorientierter Bildungsgänge, die in den meisten Staaten zum Doktorgrad führen, wird als sog. Nettoquote berechnet.

<sup>3)</sup> Einige Staaten mit durchgehend fehlenden Werten sind nicht berücksichtigt (Belgien, Mexiko und Luxemburg).

<sup>4)</sup> Tertiärbereich A (ISCED 5A), Erstabschluss: Studiengänge an Hochschulen (also in Deutschland z. B. ohne Verwaltungs- und Fachhochschulen). Bis 2003 Bruttoquoten.

<sup>5)</sup> Bruttoquoten für Irland, Italien, Japan, Spanien, Türkei, Ungarn und die USA.

<sup>6)</sup> Bruttoquoten für Kanada, Ungarn, Irland, Japan, Spanien und die USA.

<sup>7)</sup> Bruttoquoten für Kanada, Ungarn, Irland, Japan, Spanien, Türkei und die USA.

<sup>8)</sup> Bruttoquoten für Deutschland, Irland, Italien, Japan, Polen, Schweiz und die USA.

<sup>9)</sup> Bruttoquoten für Italien, Japan, Südkorea, Niederlande, Großbritannien und die USA.

<sup>10)</sup> Bruttoquoten für Frankreich, Irland, Japan, Neuseeland, Polen und die USA.

<sup>11)</sup> Bruttoquoten für Frankreich, Irland, Japan, Niederlande, Polen und die USA.

<sup>12)</sup> Absolvent(inn)en des Tertiärbereichs A und weiterführender Forschungsprogramme (ISCED 6), Erst- und Folgeabschlüsse nach OECD Online-Datenbank.

Quelle: OECD, Bildung auf einen Blick, verschiedene Jahrgänge, OECD Online Education Database
Litraturverzeichnis


Literaturverzeichnis


Kultusministerkonferenz KMK (2005): Prognose der Studienanfänger, Studierenden und Hochschulabsolventen bis 2020, Statistische Veröffentlichungen der Kultusministerkonferenz, Dokumentation Nr. 176, Oktober 2005
Bildung, Qualifikation und technologische Leistungsfähigkeit


Wissenschaftsrat (2002): Empfehlungen zur Doktorandenausbildung, Drs. 5459/02 des Wissenschaftsrats.